|
|
|
|
|
|
Raman Spectroscopy Study of Ganoderma Spore Oil |
GUO Peng-cheng, XUE Jing-hong, CHEN Xiang-bai* |
School of Science, Wuhan Institute of Technology, Laboratory of Optical Information Technology, Wuhan 430205, China |
|
|
Abstract Raman spectroscopy has been applied for rapid analysis of ganoderma spore oil. It is found that the Raman spectrum of ganoderma spore oil has a weak and broad characteristic phonon mode at 1 563 cm-1, which is not observed in olive oil, sunflower seed oil, and cod-liver oil. In addition, the relative intensity ratio of the two phonon modes at 1 445 and 1 660 cm-1 in ganoderma spore oil is very different comparing with that in olive oil, sunflower seed oil, and cod-liver oil. Furthermore, Raman analysis of deteriorated ganoderma spore oil and fake ganoderma spore oil is investigated. Our results showed that when ganoderma spore oil is exposed in air, its active ingredients will be oxidized, and the fake ganoderma spore oil on market could be a mixture of deteriorated ganoderma spore oil, sunflower seed oil, or other cheap vegetable oils.
|
Received: 2016-12-21
Accepted: 2017-05-15
|
|
Corresponding Authors:
CHEN Xiang-bai
E-mail: xchen@wit.edu.cn
|
|
[1] ZHOU Li-yun(周莉云). Chinese Journal of Ethnomedicine and Ethnopharmacy(中国民族民间医药杂志), 2013, 22(9): 11.
[2] WANG Kai-fa, ZHI Chong-yuan(王开发,支崇远). Food Research and Development(食品研究与开发), 2002, 23(2): 52.
[3] LIANG Jing, HE Wei-zhi, LI Qin-yun(梁 静,何威之,李琴韵). Chinese Traditional Patent Medicine(中成药), 2007, 29(10): 1529.
[4] Gao Pei, Hirano T, Chen Zhiqing, et al. Fitoterapia, 2012, 83(3): 490.
[5] Xie Yizhen, Li Senzhu, Yee A, et al. Enzymeand Microbial Technology, 2006, 40(1): 177.
[6] Fu Yujie, Liu Wei, Zu Yuangang, et al. Food Chemistry, 2009, 112(1): 71.
[7] Hajimahmoodi M, Vander Heyden Y, Sadeghi N, et al. Talanta, 2005, 66(5): 108.
[8] Zabaras D, Gordon M H. Food Chemistry, 2004, 84(3): 475.
[9] LUO Wei-qiang(罗伟强). Science and Technology of Food Industry(食品工业科技), 2003, 06(33): 79.
[10] Chen X B, Kong M H, Choi J Y, et al. Journal of Physics D: Applied Physics, 2016, 49: 465304.
[11] KONG Meng-hong, WU Du-xuan, CHEN Xiang-bai(孔梦红,吴杜轩,陈相柏). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(3): 778.
[12] SUN Lu, CHEN Bin, GAO Rui-chang, et al(孙 璐,陈 斌,高瑞昌,等). Journal of Chinese Institute of Food Science and Technology(中国食品学报), 2012, 12(12): 113.
[13] ZHANG Chao-hui, YAN Hua, GU Qiang, et al(张朝晖,严 华,顾 强,等). Journal of Food Safety & Quality(食品安全质量检测学报), 2015, 6(11): 4324.
[14] XIONG Jing, XIANG Yan-nan, SUN Pei-long(熊 静,项延楠,孙培龙). Food Science(食品科学), 2015, 36(24): 200.
[15] Zou Mingqiang, Zhang Xiaofang, Qi Xiaohua, et al. Agricultural and Food Chemistry, 2009, 57: 6001.
[16] El-Abassy RM, Donfack P, Materny A. Journal of Raman Spectroscopy, 2009, 40(9): 1284.
[17] YANG Kun, CHU Kun-kun, ZHU Xiang, et al(杨 坤,褚昆昆,朱 祥,等). Cereals & Oils(粮食与油脂), 2015, 28(11): 56. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
|
|
|
|