|
|
|
|
|
|
Studies of the Fluorescence Properties of Methanol and Ethanol Based on the Density Functional Theory |
ZHU Cong-hai1, 3, CHEN Guo-qing1, 3*, ZHU Chun1, 2, 3, ZHAO Jin-chen1, 3, LIU Huai-bo1, 3, ZHANG Xiao-he1, 3, SONG Xin-shu1, 3 |
1. School of Science, Jiangnan University, Wuxi 214122, China
2. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China
3. Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, Wuxi 214122, China |
|
|
Abstract The absorption and the emission spectra of methanol and ethanol, scanned by the Edinburgh FLS920P steady-instantaneous fluorescence spectrometer, are studied on this paper. Aiming at comparison on the molecular structuresof methanol and ethanol under different states, we employ the density functional theory (DFT) and the single-excitation configuration interaction (CIS) to optimizemolecular structures under the ground and excited state. The absorption and emission spectra of methanol and ethanol on the base of 6-31++G (d, p) are estimated based on the time-dependent density functional theory (TD-DFT) with the polarized continuous model (PCM), which are in agreements with the experimental results. Furthermore, we analyze the fluorescence mechanism of methanol and ethanol, and investigate the effect caused by different exchange correlation functions on the calculated spectra. The results indicate that methanol and ethanol have weak absorption in ultraviolet regionand produce Raman band and weak fluorescence peaks through UV excitation. Meanwhile, the absorption spectra of methanol and ethanol are produced by Rydberg excitation, of which the orbit jumps from σ* to π*. Our results show that the OLYP function can reproduce the experimental absorption spectrum well and the MPWK function can predict the emission energy well. There exist differences on calculations of transition energy varying from different pure functions. Our results can provide a reliable tool to study alcohols’ molecular properties.
|
Received: 2016-12-23
Accepted: 2017-05-18
|
|
Corresponding Authors:
CHEN Guo-qing
E-mail: cgq2098@163.com
|
|
[1] Benmore C J, Loh Y L. Journal of Chemical Physics, 2000, 112(13): 5877.
[2] Schnabel T, Srivastava A, Vrabec J, et al. J. Phys. Chem. B, 2007, 111(33): 9871.
[3] WU Xiao-Jing, DAI Yun, ZHANG Nan, et al(吴晓静, 代 云, 张 楠, 等). Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(11): 2535.
[4] Lamanna R,Cannistraro S. Chemieal Physics,1996,213: 95.
[5] Wakisaka A,Matsuura K. Journal of Molecular Liquids,2006,129: 25.
[6] Yu Y,Lin K,Zhou X,et al. J. Phys. Chem. C,2007, 111: 8971.
[7] ZHU Tuo, CHEN Guo-qing, YU Rui-peng, et al(朱 拓, 陈国庆, 虞锐鹏, 等). Optical Technique(光学技术), 2006, 32(1): 11.
[8] CHEN Guo-qing, ZHU Tuo, YU Rui-peng, et al(陈国庆, 朱 拓, 虞锐鹏, 等). Opto-Electronic Engineering(光电工程), 2005, 32(6):31.
[9] LIU Ying, PENG Chang-de, LAN Xiu-feng, et al(刘 莹, 彭长德, 兰秀风, 等). Acta Physica Sinica(物理学报), 2005, 54(11): 5455.
[10] LIU Ya-jun(刘亚军). Progress in Chemistry(化学进展), 2012, 24(6): 951.
[11] Lynch B J, Fast P L, Harris M, Thruhlar D G. J. Phys. Chem. A, 2000, 104: 4811.
[12] Perdew J P, Burke K, Ernzerhof M. Phys. Rev. Lett., 1996, 77: 3865.
[13] Sundholm D. Phys. Chem. Chem. Phys., 2003, 5: 4265.
[14] Lee C, Yang W, Parr R G. Phys. Rev. B, 1988, 37: 785.
[15] Foresman J B, Head-Gordon M, Pople J A, et al. J. Phys. Chem., 1992, 96(1): 135.
[16] Piacente G, D’ Aiuto V, Aschi M, et al. Theoretical Chemistry Accounts, 2014 , 133(5): 135.
[17] Jr J R P. Theoretical Chemistry Accounts, 2011, 128(3): 275.
[18] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09 Revision B. 01, Wallingford CT: Gaussian Inc., 2010.
[19] Feifel R, Tanaka T, Kitajima M, et al. J. Phys. Chem., 2007, 126(17): 174304, 1.
[20] WANG Yi-lei, WU Guo-shi(王溢磊, 吴国是). Acta Physico-Chimica Sinica(物理化学学报), 2007, 23(12): 1831. |
[1] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[2] |
ZHENG Pei-chao, YIN Yi-tong, WANG Jin-mei*, ZHOU Chun-yan, ZHANG Li, ZENG Jin-rui, LÜ Qiang. Study on the Method of Detecting Phosphate Ions in Water Based on
Ultraviolet Absorption Spectrum Combined With SPA-ELM Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 82-87. |
[3] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[4] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[5] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[6] |
WANG Hong-jian1, YU Hai-ye1, GAO Shan-yun1, LI Jin-quan1, LIU Guo-hong1, YU Yue1, LI Xiao-kai1, ZHANG Lei1, ZHANG Xin1, LU Ri-feng2, SUI Yuan-yuan1*. A Model for Predicting Early Spot Disease of Maize Based on Fluorescence Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3710-3718. |
[7] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[8] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[9] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[10] |
WAN Mei, ZHANG Jia-le, FANG Ji-yuan, LIU Jian-jun, HONG Zhi, DU Yong*. Terahertz Spectroscopy and DFT Calculations of Isonicotinamide-Glutaric Acid-Pyrazinamide Ternary Cocrystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3781-3787. |
[11] |
ZHANG Xiao-dan1, 2, LIU Li-li1*, YU Ying1, CHENG Wei-wei1, XU Bao-cheng1, HE Jia-liang1, CHEN Shu-xing1, 2. Activation of Epigallocatechin Gallate on Alcohol Dehydrogenase:
Multispectroscopy and Molecular Docking Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3622-3628. |
[12] |
LI Xiao-li1, WANG Yi-min2*, DENG Sai-wen2, WANG Yi-ya2, LI Song2, BAI Jin-feng1. Application of X-Ray Fluorescence Spectrometry in Geological and
Mineral Analysis for 60 Years[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 2989-2998. |
[13] |
ZHANG Yan-dong1, WU Xiao-jing1*, LI Zi-xuan1, CHENG Long-jiu2. Two-Dimensional Infrared Spectroscopic Study of Choline
Chloride/Glycerin Solution Disturbed by Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3047-3051. |
[14] |
XUE Fang-jia, YU Jie*, YIN Hang, XIA Qi-yu, SHI Jie-gen, HOU Di-bo, HUANG Ping-jie, ZHANG Guang-xin. A Time Series Double Threshold Method for Pollution Events Detection in Drinking Water Using Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3081-3088. |
[15] |
YU De-guan1, CHEN Xu-lei1, WENG Yue-yue2, LIAO Ying-yi3, WANG Chao-jie4*. Computational Analysis of Structural Characteristics and Spectral
Properties of the Non-Prodrug-Type Third-Generation
Cephalosporins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3211-3222. |
|
|
|
|