|
|
|
|
|
|
Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2* |
1. School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
2. Key Laboratory of Spectral Measurement and Analysis of Shanxi Province, Taiyuan 030031, China
|
|
|
Abstract QDs are a new class of semiconductor light-emitting nanomaterials, which have attracted much attention due to their unique optical properties such as adjustable luminous colorand size, wide excitation spectrum, narrow emission spectrum, etc. It is the ideal material for photovoltaic device applications in which nuclear/shell QD has better optical performance than single QD. For instance, type I nuclear/shell QD solar cell devices show higher stability and conversion efficiency in quantum dot-sensitized solar cells. Nevertheless, how the interfacial process and recombination kinetics affect the performance of devices have been the focus of attention, and the lack of related cognition has hindered the further development of quantum dot photovoltaic devices. A comprehensive study on carrier dynamics of the topical CdSe/ZnS QDs and QD-acceptor (1-chloroanthraquinone (1-CAQ), anthraquinone (AQ), and methyl viologen (MV2+)) complexes are performed employing the femtosecond time-resolved transient absorption (TA) spectroscopy and quantum chemical calculations. As indicated by the spectroscopic analysis, the fastest ET and AR processes occurred in QD-MV2+ complexes, and the ET rate was positively correlated with the AR rate. In addition, the bandgap of electron acceptor molecules and the driving force were demonstrated as crucial factors affecting the rate of the ET process according to Marcus's ET theory combined with density function calculation.This study will provide new insights into the selection of electron acceptor molecules, which will be essential in improving the design of photovoltaic devices.
|
Received: 2022-06-15
Accepted: 2022-11-24
|
|
Corresponding Authors:
GE Jing
E-mail: 703366@sxnu.edu.cn
|
|
[1] Ocak I, Kara H E S. Journal of Luminescence, 2018, 197(5): 112.
[2] Baruah Sunandan, Sinha Sudarson Sekhar, Ghosh Barnali, et al. Journal of Applied Physics, 2009, 105(7): 074308.
[3] Shulga Artem G, Kahmann Simon, Dirin Dmitry N, et al. ACS Nano, 2018, 12(12): 12805.
[4] Wu Kaifeng, Lian Tianquan. Chemical Society Reviews, 2016, 45(14): 3781.
[5] Li Yuanzuo, Xu Beibei, Song Peng, et al. The Journal of Physical Chemistry C, 2017, 121(23): 12546.
[6] Zhu Haiming, Song Nianhui, Lian Tianquan. Journal of the American Chemical Society, 2010, 132(42): 15038.
[7] Kaledin Alexey L, Lian Tianquan, Hill Craig L, et al. The Journal of Physical Chemistry B, 2015, 119(24): 7651.
[8] Zhao Huifang, Li You, Diao Lihe, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 218(13): 237.
[9] Scholz Frank, Dworak Lars, Matylitsky Victor V, et al. ChemPhysChem, 2011, 12(12): 2255.
[10] Cui Shicong, Tachikawa Takashi, Fujitsuka Mamoru, et al. The Journal of Physical Chemistry C, 2010, 114(2): 1217.
[11] Park Young-Shin, Bae Wan Ki, Padilha Lazaro A, et al. Nano Letters, 2014, 14(2): 396.
[12] Ge Jing, Zhang Qun, Jiang Jun, et al. Physical Chemistry Chemical Physics, 2015, 17(19): 13129.
[13] QIN Chao-chao, LIU Hua, ZHOU Zhong-po(秦朝朝,刘 华,周忠坡). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(6): 1695.
[14] WAN Hao-yu, ZHOU Zi-xiong, WU Jun-biao, et al(万浩宇,周子雄,吴俊彪,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(2): 368.
[15] Zhou Panwang, Liu Jianyong, Yang Songqiu, et al. Physical Chemistry Chemical Physics, 2012, 14(43): 15191.
[16] Huang Jier, Huang Zhuangqun, Yang Ye, et al. Journal of the American Chemical Society, 2010, 132(13): 4858.
[17] Gao Yunan, Sandeep C S Suchand, Schins Juleon M, et al. Nature Communications, 2013, 4: 2329.
[18] Masteri-Farahani M, Khademabbasi K. Journal of Luminescence, 2018, 204(12): 130.
[19] Zhao Huifang, Sun Chaofan, Yin Hang, et al. Scientific Reports, 2019, 9: 7756.
[20] Shi Xiaolong, Yang Yanhui, Wang Lihai, et al. The Journal of Physical Chemistry C, 2019, 123(7): 4007.
|
[1] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[2] |
WAN Mei, ZHANG Jia-le, FANG Ji-yuan, LIU Jian-jun, HONG Zhi, DU Yong*. Terahertz Spectroscopy and DFT Calculations of Isonicotinamide-Glutaric Acid-Pyrazinamide Ternary Cocrystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3781-3787. |
[3] |
LAI Niu, HUANG Qi-qiang, ZHANG Qin-yang, ZHANG Bo-wen, WANG Juan, YANG Jie, WANG Chong, YANG Yu, WANG Rong-fei*. Introduction to Perovskite Quantum Dots and Metal-Organic Frameworks and the Development of Composites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3321-3329. |
[4] |
ZHANG Yan-dong1, WU Xiao-jing1*, LI Zi-xuan1, CHENG Long-jiu2. Two-Dimensional Infrared Spectroscopic Study of Choline
Chloride/Glycerin Solution Disturbed by Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3047-3051. |
[5] |
YU De-guan1, CHEN Xu-lei1, WENG Yue-yue2, LIAO Ying-yi3, WANG Chao-jie4*. Computational Analysis of Structural Characteristics and Spectral
Properties of the Non-Prodrug-Type Third-Generation
Cephalosporins[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3211-3222. |
[6] |
WANG Yi-ru1, GAO Yang2, 3, WU Yong-gang4*, WANG Bo5*. Study of the Electronic Structure, Spectrum, and Excitation Properties of Sudan Red Ⅲ Molecule Based on the Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2426-2436. |
[7] |
LIU Guo-peng1, YOU Jing-lin1*, WANG Jian1, GONG Xiao-ye1, ZHAO Yu-fan1, ZHANG Qing-li2, WAN Song-ming2. Application of Aerodynamic Levitator Laser Heating Technique: Microstructures of MgTi2O5 Crystal and Melt by in-situ Superhigh Temperature Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2507-2513. |
[8] |
TANG Yan1, YANG Yun-fan1, HU Jian-bo1, 2, ZHANG Hang2, LIU Yong-gang3*, LIU Qiang-qiang4. Study on the Kinetic Process and Spectral Properties of the Binding of Warfarin to Human Serum Protein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2099-2104. |
[9] |
SUN Zhi-shen1, LIU Yong-gang2, 3, ZHANG Xu1, GUO Teng-xiao1*, CAO Shu-ya1*. Study on the Near-Infrared Spectra of Sarin Based on Density
Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1765-1769. |
[10] |
LIANG Xiao-rui1, CONG Jing-xian2, LI Yin1, LIU Jie1, JIN Liang-jie1, SUN Xiao-wei1, LI Xiao-dong3. Study on Vibrational Spectra of Cypermethrin Based on Density Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1381-1386. |
[11] |
HAN Zhao-xia1, 2, 3*, YANG Zhi-jin1, ZHANG Zhi-hong1, DING Shu-hui1, ZHANG Da-wei1, 2, 3, HONG Rui-jin1, 2, 3, TAO Chun-xian1, 2, 3, LIN Hui1, 2, 3, YU De-chao1, 2, 3. Preparation of Full-Color Carbon Quantum Dots and Their Application in WLED[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1358-1366. |
[12] |
CI Cheng-gang*, ZANG Jie-chao, LI Ming-fei*. DFT Study on Spectra of Mn-Carbonyl Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1434-1441. |
[13] |
FENG Xiang-yu, JIANG Na, WANG Wei, LI Meng-qian, ZHAO Su-ling*, XU Zheng. One-Step Synthesis of Sulfur Quantum Dots and Electroluminescent Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1569-1574. |
[14] |
LI Shuai-wei1, WEI Qi1, QIU Xuan-bing1*, LI Chuan-liang1, LI Jie2, CHEN Ting-ting2. Research on Low-Cost Multi-Spectral Quantum Dots SARS-Cov-2 IgM and IgG Antibody Quantitative Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1012-1016. |
[15] |
AN Huan1, YAN Hao-kui2, XIANG Mei1*, Bumaliya Abulimiti1*, ZHENG Jing-yan1. Spectral and Dissociation Characteristics of p-Dibromobenzene Based on External Electric Field[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 405-411. |
|
|
|
|