|
|
|
|
|
|
Study on the Near-Infrared Spectra of Sarin Based on Density
Functional Theory |
SUN Zhi-shen1, LIU Yong-gang2, 3, ZHANG Xu1, GUO Teng-xiao1*, CAO Shu-ya1* |
1. State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
2. State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
3. Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621010, China
|
|
|
Abstract Near-infrared spectroscopy is mainly the overtones and combination bands absorption spectra of organic molecules, which are generated by the overtones and combination bands of hydrogen-containing groups such as C—H, N—H, O—H, etc., which can obtain molecular structure, composition, state and other information. This technology is an important method for studying the vibration information of hydrogen-containing groups in organic matter and is often used for qualitative and quantitative analysis of biological substances such as food and crops. The research objects in the biochemical field also have hydrogen-containing groups. These hydrogen-containing groups have strong absorption frequency characteristics, are less affected by the internal and external environment of the molecule, and have more stable spectral characteristics in the near-infrared spectrum. This technology can be used to detect chemical warfare agents and hazardous chemicals. Sarin is a neurotoxic chemical agent. When studying its structure, chemical properties and spectral properties, in order to ensure safety, simulants are often used in the experiment to substitute for testing, but there is no fair near-infrared simulant for sarin. This paper uses density functional theory (DFT), based on the Gaussian program package, and uses B3LYP/def2-SVP to optimize the ground state structure of the sarin molecule, and calculates the fine structure of the sarin molecule and the fundamental frequency vibration mode of the molecule. The generalized second-order perturbation theory (GVPT2) is introduced to establish a theoretical model for simulating the near-infrared spectrum of biochemical poisons, obtaining the near-infrared vibration peaks and main vibration modes, and the near-infrared spectrum drawn from the vibrations of overtones and combination bands. Analyze the hydrogen-containing groups of sarin in the near-infrared region, use this method to identify its characteristic peaks, obtain three characteristic peaks of sarin molecules at 1 150, 1 362 and 1 500 nm and analyze their vibration modes. Among them, the position at 1 150 nm is produced by the contribution of multiple overtones and combination bands vibration. 1 362 nm is a wide absorption vibration region, mainly caused by the combination bands of atoms connected to C atoms in the molecule and other non-C, H atoms. The near-infrared vibration peak at 1 500 nm is mainly caused by the C8 Related vibration mode contribution. In this paper, the theoretical model of Sarin’s near-infrared spectroscopy is established through density functional theory, and the feasibility of the theoretical model is verified through experiments, which provides theoretical support for finding its near-infrared spectroscopy simulation agent.
|
Received: 2021-09-15
Accepted: 2022-06-22
|
|
Corresponding Authors:
GUO Teng-xiao, CAO Shu-ya
E-mail: guotengxiao@sklnbcpc.cn
|
|
[1] Pasquini C. Analytica Chimica Acta, 2018, 1026: 8.
[2] Salzer R. Angewandte Chemie International Edition, 2008, 47(25): 4628.
[3] Salzer R. Angewandte Chemie International Edition, 2002, 41(22): 4347.
[4] Zheng Y Z, Zhou Y, Deng G, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 226: 117624.
[5] El-Taher S, Metwaly M. Journal of Molecular Structure, 2017, 1134: 840.
[6] Oliveira L B A, Cardoso W B, Colherinhas G. Journal of Molecular Liquids, 2021, 339: 116815.
[7] Prasad H S N, Ananda A P, Lohith T N, et al. Journal of Molecular Structure, 2022, 1247: 131333.
[8] XU Di, XIN Min-si, LIU Chun-yu, et al(徐 笛, 辛敏思, 刘春宇, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(1): 39.
[9] QIN Rui(覃 睿). Chinese Journal of High Pressure Physics(高压物理学报), 2019, 33(3): 4.
[10] Cohen A J, Mori-Sánchez P, Yang W. Chemical Reviews, 2012, 112(1): 289.
[11] Ramakrishnan R, Hartmann M, Tapavicza E, et al. Journal of Chemical Physics, 2015, 143(8): 084111.
[12] Fuks J I, Nielsen S E B, Ruggenthaler M, et al. Physical Chemistry Chemical Physics, 2016, 18(31): 20976.
[13] Hadidi S, Shiri F, Norouzibazaz M. Structural Chemistry, 2020, 31(1): 115.
|
[1] |
NI Jin1, SUO Li-min1*, LIU Hai-long1, ZHAO Rui2. Identification of Corn Varieties Based on Northern Goshawk Optimization Kernel Based Extreme Learning Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1584-1590. |
[2] |
YU Shui1, HUAN Ke-wei1*, LIU Xiao-xi2, WANG Lei1. Quantitative Analysis Modeling of Near Infrared Spectroscopy With
Parallel Convolution Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1627-1635. |
[3] |
WEI Zi-chao1, 2, LU Miao1, 2, LEI Wen-ye1, 2, WANG Hao-yu1, 2, WEI Zi-yuan1, 2, GAO Pan1, 2, WANG Dong1, 2, CHEN Xu1, 2*, HU Jin1, 2*. A Nondestructive Method Combined Chlorophyll Fluorescence With Visible-NIR Spectroscopy for Detecting the Severity of Heat Stress on Tomato Seedlings[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1613-1619. |
[4] |
GE Qing, LIU Jin*, HAN Tong-shuai, LIU Wen-bo, LIU Rong, XU Ke-xin. Influence of Medium's Optical Properties on Glucose Detection
Sensitivity in Tissue Phantoms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1262-1268. |
[5] |
LIU Yu-ming1, 2, 3, WANG Qiao-hua1, 2, 3*, CHEN Yuan-zhe1, LIU Cheng-kang1, FAN Wei1, ZHU Zhi-hui1, LIU Shi-wei1. Non-Destructive Near-Infrared Spectroscopy of Physical and Chemical
Indicator of Pork Meat[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1346-1353. |
[6] |
YANG Zeng-rong1, 2, WANG Huai-bin1, 2, TIAN Mi-mi1, 2, LI Jun-hui1, 2, ZHAO Long-lian1, 2*. Early Apple Bruise Detection Based on Near Infrared Spectroscopy and Near Infrared Camera Multi-Band Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1364-1371. |
[7] |
HU Jin-quan1, 2, YANG Hui-hua1, ZHAO Guo-liang3, ZHOU Rui-zhi4, LI Ling-qiao5. Prediction Method of Wool Content in Waste Spinning Samples Based on Semi Supervised Regression of Generative Adversarial Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1417-1424. |
[8] |
LI Zhen, HOU Ming-yu, CUI Shun-li, CHEN Miao, LIU Ying-ru, LI Xiu-kun, CHEN Huan-ying, LIU Li-feng*. Rapid Detection Method of Flavonoid Content in Peanut Seed Based on Near Infrared Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1112-1116. |
[9] |
MENG Qi1, 3, ZHAO Peng2, HUAN Ke-wei2, LI Ye2, JIANG Zhi-xia1, 3, ZHANG Han-wen2, ZHOU Lin-hua1, 3*. Non-Invasive Blood Glucose Measurement Based on Near-Infrared
Spectroscopy Combined With Label Sensitivity Algorithm and
Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 617-624. |
[10] |
TANG Jie1, LUO Yan-bo2, LI Xiang-yu2, CHEN Yun-can1, WANG Peng1, LU Tian3, JI Xiao-bo4, PANG Yong-qiang2*, ZHU Li-jun1*. Study on One-Dimensional Convolutional Neural Network Model Based on Near-Infrared Spectroscopy Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 731-736. |
[11] |
GUO Tuo1, XU Feng-jie1, MA Jin-fang2*, XIAO Huan-xian3. Characteristic Wavelength Selection Method and Application of
Near Infrared Spectrum Based on Lasso Huber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 737-743. |
[12] |
LIU Tao, LI Bo, XIA Rui*, LI Rui, WANG Xue-wen. Study on Coal and Gangue Recognition by Vis-NIR Spectroscopy Under Different Working Conditions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 821-828. |
[13] |
ZHANG Zhong-xiong1, 2, 3, LIU Hao-ling1, 3, WEI Zi-chao1, 2, PU Yu-ge1, 3, ZHANG Zuo-jing1, 2, 3, ZHAO Juan1, 2, 3*, HU Jin1, 2, 3*. Comparison of Different Detection Modes of Visible/Near-Infrared
Spectroscopy for Detecting Moldy Apple Core[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 883-890. |
[14] |
ZHANG Wei-gang, PAN Lu-lu, LÜ Dan-dan. Study on Near-Infrared Spectroscopy, Mechanics and Salt Water
Resistance of Epoxy Resin-Based Near-Infrared Absorbing Coatings[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 439-445. |
[15] |
LIU Zhao-hai1, AN Xin-chen1, 3, TAO Zhi1, 2, LIU Xiang1, 2*. Multicomponent Trace Gas Detecting and Identifying System Based on MEMS-FPI on-Chip Spectral Device[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 359-366. |
|
|
|
|