|
|
|
|
|
|
Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1 |
1. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China
2. Research and Development Center of Science and Technology, Sinopec Geophysical Corporation, Nanjing 211100, China
3. School of Energy and Materials Engineering, Taiyuan University of Science and Technology, Taiyuan 048011, China
4. Binnan Oil Production Plant, Shengli Oilfield Company, Sinopec, Binzhou 256600, China
|
|
|
Abstract Jet, also known as coal jade, is a type of coal with scarce resources and high costs, and it can be used as a material for art and craft carvings. Six jet samples were collected from Fushun City, Liaoning Province and Jimsar County, Xinjiang Autonomous Region, to analyse their petrographic properties and quality (i. e., maceral composition, maximum huminite reflectance, proximate analysis, and ultimate analysis) as well as Raman spectroscopic characteristics. The results showed that the macerals of the six jet samples are composed of mainly huminite, followed by liptinite, and then inertinite with a shallow content; moreover, the maximum huminite reflectance (Ro, max) is observed to be 0.41%~0.55%. The liptinite in the Fushun jet is mainly composed of bituminite and sporinite, whereas the liptinite in the Jimsar jet is mainly composed of cutinite. The Raman spectra of the jet samples from these two regions are considerably different from each other because their Raman structural parameters are dependent on the maceral and coal quality. The intensity ratio (ID1/IG) and area ratio (AD1/AG) of D1 and G peaks of the six jet samples increased substantially with increasing liptinite content and decreased significantly with increased huminite and inertinite contents. The ID1/IG and AD1/AG values of the Jimsar jet are considerably lower than those of the Fushun jet. It is because the Fushun jet contains a large number of bituminite and sporinite, and the aromatic ring growth exhibited by its molecular structure is poor. Additionally, the ID1/IG and AD1/AG values of the jet samples from the two regions showed a differential decreasing trend with an increase in the Ro, max value. The spatial arrangement of aromatic layers became more orderly with increased coalification degree. These results indicate that Raman spectroscopic parameters can effectively indicate the macromolecular structural difference observed in jet samples of different origins. Furthermore, this will provide a scientific basis for tracing the provenance of jet cultural relics in the future and provide insights into the development history of the handicraft industry and commodity circulation in ancient China.
|
Received: 2022-12-24
Accepted: 2023-09-18
|
|
Corresponding Authors:
CHEN Yi-lin
E-mail: 1chenyilin2@163.com
|
|
[1] Lambert J B, Frye J S, Jurkiewicz A. Archaeometry, 1992, 34(1): 121.
[2] ZHOU Pei-ling(周佩玲). Organic Gemology(有机宝石学). Wuhan: China University of Geosciences Press(武汉: 中国地质大学出版社), 2004.
[3] XING Ying-ying, ZHU Li(邢莹莹, 朱 莉). Journal of Gems & Gemmology(宝石和宝石学杂志), 2007, 9(4): 21.
[4] Kool J, Poole I, Bergen P. Organic Geochemistry, 2009, 40(6): 700.
[5] SUN Nuo-yang, WANG Long, HAN Bin, et al(孙诺杨, 王 龙, 韩 宾, 等). Sciences of Conservation and Archaeology(文物保护与考古科学), 2021, 33(4): 44.
[6] ZHAO Cheng-ze, LU Lian-cheng(赵承泽, 卢连城). Cultural Relics(文物), 1978,(5): 64.
[7] Compilation Group of Chinese Coal Mine History, Ministry of Coal Industry(煤炭工业部《中国煤矿史》编写组). Studies in the History of Natural Sciences(自然科学史研究), 1984,(1): 68.
[8] Sun N, Wang R, Han B, et al. Microchemical Journal, 2020, 157: 104907.
[9] LIU Jia(刘 嘉). Inner Mongolia Coal Economy(内蒙古煤炭经济), 2016,(12): 69.
[10] Watts S, Pollard A M, Wolff G A. Archaeometry, 1997, 39(1): 125.
[11] DONG Lian-hui, LIU De-quan, TANG Yan-ling, et al(董连慧, 刘德权, 唐延龄, 等). Xinjiang Geology(新疆地质), 2016, 34(4): 463.
[12] JIANG Yao-fa, DAI Shi-feng, WANG Wei-ming, et al(姜尧发, 代世峰, 王伟铭, 等). Petrology, Palynology and Geochemistry of Cenozoic Coals in China(中国新生代煤的煤岩学、孢粉学和地球化学研究). Beijing: Geological Publishing House(北京: 地质出版社), 2021.
[13] YU Shui-jun, ZHANG Yu-gui, ZHENG Li-gang, et al(于水军, 张玉贵, 郑立刚, 等). Coal Conversion(煤炭转化), 2009, 32(4): 20.
[14] ZHANG Xiu-yi, TONG Yuan-zhen, XIAO Da-xian, et al(张秀仪, 童元贞, 肖达先, 等). Coal Geology of China(中国煤炭地质), 1996,(8): 10.
[15] Kool J, Poole I, van Bergen P F. Organic Geochemistry, 2009, 40(6): 700.
[16] Davis, Mary. Conservator, 1993, 17(1): 11.
[17] Watts S, Pollard A M, Wolff G A. Journal of Archaeological Science, 1999, 26(8): 923.
[18] Bechtel A, Gratzer R, Sachsenhofer R F. International Journal of Coal Geology, 2001, 46(1): 27.
[19] BI Kai, WU Jing, FAN Yong, et al(毕 恺, 吴 静, 范 勇, 等). Metallurgical Analysis(冶金分析), 2021, 41(11): 84.
[20] Pollard A M, Bussell G D, Baird D C. Archaeometry, 1981, 23(2): 139.
[21] Hunter F J, McDonnell J G, Pollard A M, et al. Archaeometry, 1993, 35(1): 69.
[22] Sales K D, Oduwole A D, Convert J, et al. Archaeometry, 1987, 29(1): 103.
[23] Allason Jones, Jones. European Journal of Archaeology, 2001, 4(2): 233.
[24] HAN De-xin(韩德馨). Coal Petrology of China(中国煤岩学). Xuzhou: China University of Mining and Technology Press(徐州: 中国矿业大学出版社), 1996.
[25] XING Ying-ying(邢莹莹). Superhard Material Engineering(超硬材料工程), 2009, 21(5): 55.
[26] CHEN Pei-yuan(陈佩元). Coal Petrologic Atlas of China(中国煤岩图鉴). Beijing: China Coal Industry Press(北京: 煤炭工业出版社), 1996.
[27] YAO Zhi-hui, LI Feng(姚智辉, 李 锋). Cultural Relics of Central China(中原文物), 2014, (1): 118.
[28] DENG Qin-ying, LIU Lan, DENG Hui-min(邓芹英, 刘 岚, 邓慧敏). Spectral Analysis Toturial(波谱分析教程). Beijing: Science Press(北京: 科学出版社), 2007.
[29] Li X, Hayashi J I, Li C Z. Fuel, 2006, 85(12-13): 1700.
[30] SU Xian-bo, SI Qing, SONG Jin-xing(苏现波, 司 青, 宋金星). Journal of China Coal Society(煤炭学报), 2016, 41(5): 1197.
[31] LI Xia, ZENG Fan-gui, WANG Wei, et al(李 霞, 曾凡桂, 王 威, 等). Journal of China Coal Society(煤炭学报), 2016,41(9): 2298.
[32] Liu X, Song D, He X, et al. Fuel, 2018, 222: 687.
[33] ZHANG Xiao-yang, ZHOU Bin-xuan, AN Dong-hai, et al(张肖阳, 周滨选, 安东海, 等). Journal of China Coal Society(煤炭学报), 2019,44(2): 604.
[34] Xu J, Liu J, Zhang X, et al. Fuel, 2020, 264: 116826.
[35] LI Jin-ze, WANG Jie-ping, SUN Zhang(李金泽, 王杰平, 孙 章). Fuel & Chemical Processes(燃料与化工), 2020, 51(2): 8.
[36] Li K, Liu Q, Cheng H, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 249: 119286.
[37] Chen C, Tang Y, Guo X. Fuel, 2022, 310: 122362.
[38] AN Yan-fei, WANG Mi-na, LIU Ling-ling, et al(安燕飞, 汪米娜, 刘玲玲, 等). Journal of China Coal Society(煤炭学报), 2017, 42(11): 2975.
[39] Nikitin A P, Khabibulina E R, Mikhaylova E S, et al. Coke and Chemistry, 2019, 62(5): 169.
[40] ZHANG Jin-gang, SUN Zhi-gang, GUO Qiang, et al(张金刚, 孙志刚, 郭 强, 等). Journal of Fuel Chemistry and Technology(燃料化学学报), 2017, 45(2): 129.
[41] LIU Qin-fu, YUAN Liang, LI Kuo, et al(刘钦甫, 袁 亮, 李 阔, 等). Journal of Earth Science(地球科学), 2018, 43(5): 1663.
[42] Sadezky A, Muckenhuber H, Grothe H, et al. Carbon, 2005, 43(8): 1731.
[43] Shang N G, Silva S, Jiang X, et al. Carbon, 2011, 49(9): 3048.
[44] GAO Fei, DENG Han-zhong, WANG Xue-feng, et al(高 飞, 邓汉忠, 王雪峰, 等). Journal of Analytical Science(分析科学学报), 2016, 32(3): 377.
[45] LI Huan-tong, WANG Nan, ZHU Zhi-rong, et al(李焕同, 王 楠, 朱志蓉, 等). Coal Geology & Exploration(煤田地质与勘探), 2020, 48(1): 34.
[46] Schwan J, Ulrich S, Batori V, et al. Journal of Applied Physics, 1996, 80(1): 440.
[47] YANG Hao-rui, YAO Hui-fang, JI Xin-qiang(杨昊睿, 要惠芳, 姬新强). China Mining Magazine(中国矿业), 2016, 25(11): 152.
[48] GUO De-yong, GUO Xiao-jie, LIU Qing-jun, et al(郭德勇, 郭晓洁, 刘庆军, 等). Journal of China University of Mining & Technology(中国矿业大学学报), 2019, 48(5): 1036.
[49] LI Fan, WU Dong, LIU Li-chen, et al(李 凡, 吴 东, 刘丽晨, 等). Coal Conversion(煤炭转化), 1992,(2): 65.
[50] XIE Ke-chang(谢克昌). Coal Structure and Its Reactevety(煤的结构与反应性). Beijing: Science Press(北京: 科学出版社), 2002.
[51] YU Xiao-lu, BAI Fan, LI Zhi-ming(余晓露, 白 帆, 李志明). Petroleum Geology & Experiment(石油实验地质), 2012, 34(6): 664.
[52] LI Guo-ling, QIN Zhi-hong, NI Zhong-hai(李国玲, 秦志宏, 倪中海). Journal of Liaoning University(Natural Science Edition)[辽宁大学学报(自然科学版)], 2013, 40(1): 48.
[53] WANG Jun, ZHANG Qian, LIANG Li-tong, et al(王 骏, 张 乾, 梁丽彤, 等). Journal of China Coal Society(煤炭学报), 2021, 46(S2): 1042.
[54] WANG Yue, DING Hua, WU Lin-lin, et al(王 越, 丁 华, 武琳琳, 等). Journal of Fuel Chemistry and Technology(燃料化学学报), 2021, 49(5): 598.
[55] LIU Xiao-fei, YOU Jing-lin, WANG Yuan-yuan, et al(柳晓飞, 尤静林, 王媛媛, 等). Journal of Fuel Chemistry and Technology(燃料化学学报), 2014, 42(3): 270.
|
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[6] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[7] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[8] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[9] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[10] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[11] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[12] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[13] |
QIN Li-mei, Andy Hsitien Shen*. Photoluminescence Spectral Characteristics of Jet From Fushun, Liaoning Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3180-3185. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|