|
|
|
|
|
|
Applications of Hollow Waveguide in Spectroscopic Gas Sensing |
LI Jin-yi1, DU Zhen-hui2, WANG Rui-xue2, YANG Xu2, SONG Li-mei1, GUO Qing-hua1 |
1. Key Laboratory of Advanced Electrical Engineering and Energy Technology, Tianjin Polytechnic University, Tianjin 300387, China
2. State Key Lab of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China |
|
|
Abstract Hollow Waveguides (HWGs) are used in spectroscopic gas sensing devices as both a optical waveguide and gas transmission cell that provide an extended optical pathlength yielding high sensitivity measurements. Their advantages over traditional multipass gas cells are that they have a much smaller sample volume and can provide a faster response time as well as stable and flexible light path with lower cost. The studies recommend three main types of HWGs commonly used for gas sensing, namely Ag/AgI-coated hollow waveguides (Ag/AgI-HWG), photonic bandgaps hollow waveguides (PBG-HWG) and substrate-integrated hollow waveguides (iHWG), respectively. Research and development of spectroscopic gas sensing with HWG modules have been reviewed for the past few years. In addition, the application modes and fields have also been summarized. The studies show that HWGs have been coupled to FTIR, laser absorption spectroscopy (LAS) and Raman spectroscopy to replace conventional multipass gas cells. Now, a series of achievements were made and relevant applications of HWGs based gas sensing included atmospheric environment monitoring, breath diagnostics and industrial process monitoring. Particularly, the HWG sensors based on mid-infrared (MIR) LAS offer a number of advantages over other spectroscopic methods, i. e., relative simple composition, low cost, superior compatibility with various of HWGs and strong adaptability to environment, which are fairly attractive for practical application. To summarize, with the development of laser technology, optical waveguide technology and spectral technology, HWG based spectroscopic gas sensing is developing rapidly, and gradually operated from the laboratory to the field application.
|
Received: 2016-10-11
Accepted: 2017-02-20
|
|
|
[1] ZHANG Zhi-rong, XIA Hua, DONG Feng-zhong, et al(张志荣, 夏 滑, 董凤忠, 等). Optics and Precision Engineering(光学精密工程), 2013, 21(11): 2771.
[2] Wang C, Sahay P. Sensors, 2009, 9(10): 8230.
[3] Schmidt F M, Vaittinen O, Metsl M, et al. Journal of Breath Research, 2013, 7(1): 017109.
[4] WANG Jie, XIE Pin-hua, SI Fu-qi, et al(王 界,谢品华,司福祺,等). China Environmental Monitoring(中国环境监测), 2012, 28(2): 51.
[5] Jin W, Xuan H F, Ho H L. IEE P-Optoelectron, 2010, 21(9): 094014.
[6] Wu S, Deev A, Haught M, et al. Chromatogr. A, 2008, 1188(2): 327.
[7] Haas J, Mizaikoff B. Annu. Rev. Anal. Chem., 2016, 9: 45.
[8] Zhou J Q, Lu W J, Yao Z R, et al. Appl. Spectrosc., 2013, 67(3): 301.
[9] WANG Jin-ming(王金明). Research on Near Infrared Gas Sensing Hollow Core Waveguide and It’s Application(近红外气敏检测空芯光波导的研究及其应用), Jilin University(吉林大学), 2012.
[10] Fortes P R, da Silveira Petruci J F, Wilk A, et al. Journal of Optics, 2014, 16(9): 094006.
[11] Kozodoy R L, Micheels R H, Harrington J A. Applied Spectroscopy, 1996, 50(3): 415.
[12] Charlton C, Temelkuran B, Dellemann G, et al. Appl. Phys. Lett., 2005, 86(19): 194102.
[13] Saggese S J, Harrington J A, Sigel G H. Opt. Lett., 1991, 16(1): 27.
[14] Saito Y, Kanaya T, Nomura A, et al. Opt. Lett.,1993, 18(24): 2150.
[15] Garmire E, McMahon T, Bass M. Appl. Opt., 1976, 15(1): 145.
[16] Wang Y, Hongo A, Kato Y, et al. Applied Optics, 1997, 36(13): 2886.
[17] Charlton C M, Thompson B T, Mizaikoff B. Hollow Waveguide Infrared Spectroscopy and Sensing. Heidelberg:Springer Berlin Heidelberg, 2005. 133.
[18] Poletti F, Petrovich M N, Richardson D J. Nanophotonics, 2013, 2(5-6): 315.
[19] Wilk A, Carter J C, Chrisp M, et al. Anal. Chem., 2013, 85(23): 11205.
[20] Saito M, Kikuchi K. Opt. Rev., 1997, 4(5): 527.
[21] Kim S S, Menegazzo N, Young C, et al. Appl. Spectrosc., 2009, 63(3): 331.
[22] De Melas F, Pustogov V V, Croitoru N, et al. Applied Spectroscopy, 2003, 57(6):600.
[23] Young C R, Menegazzo N, Riley A E, et al. Anal. Chem.,2011, 83(16): 6141.
[24] Werle P, Slemr F, Maurer K, et al. Opt. Lasers Eng., 2002, 37(2): 101.
[25] Ritari T, Tuominen J, Ludvigsen H, et al. Opt. Express, 2004, 12(17): 4080.
[26] Cubillas A M, Lazaro J M, Conde O M, et al. Sensors, 2009, 9(1): 490.
[27] Carvalho J P, Lehmann H, Bartelt H, et al. Sensors, 2009,(2009): 398403.
[28] Austin E, van Brakel A, Petrovich M N,et al. Sensors and Actuators, B: Chemical, 2009, 139(1): 30.
[29] Stolyarov A M, Gumennik A, McDaniel W, et al. Opt. Express, 2012, 20(11): 12407.
[30] Nwaboh J A, Hald J, Lyngs J K, et al. Appl. Phys. B, 2013, 110(2): 187.
[31] Xiong Bo, Du Zhenhui, Liu Lin,et al. Chinese Opt. Lett., 2015, 13(11): 111201(4).
[32] DU Zhen-hui, ZHANG Zhe-yuan, LI Jin-yi, et al(杜振辉,张哲远,李金义,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(8): 2669.
[33] Faist J, Capasso F, Sivco D L, et al. Science, 1994, 264(5158): 553.
[34] Curl R F, Capasso F, Gmachl C, et al. Chem. Phys. Lett., 2010, 487(1): 1.
[35] Hvozdara L, Gianordoli S, Strasser G, et al. Appl. Opt., 2000, 39(36): 6926.
[36] Charlton C, De Melas F, Inberg A, et al. IEE P-Optoelectron, 2003, 150(4): 306.
[37] Young C, Kim S S, Luzinova Y, et al. Sens. Actuators, B: Chemical, 2009, 140(1): 24.
[38] CHEN Jun-jing, WANG Yi-ding, CAO Feng(陈君景, 王一丁, 曹 峰). Laser & Optoelectronics Progress(激光与光电子学进展), 2008, 45(3): 19.
[39] DU Zhen-hui, ZHANG Zhe-yuan, ZHEN Wei-meng, et al(杜振辉, 张哲远, 甄卫萌, 等). Journal of Atmospheric and Environmental Optics(大气与环境光学学报),2015, 10(2): 165.
[40] da Silva I J G, Tütüncü E, Ngele M, et al. Analyst, 2016, 141(14): 4432.
[41] Tütüncü E, Naegele M, Fuchs P, et al. ACS Sensors, 2016, 1(7): 847.
[42] Willer U, Saraji M, Khorsandi A, et al. Opt. Laser Eng., 2006, 44(7): 699.
[43] Gayraud N, Kornaszewski W, Stone J M, et al. Appl. Opt., 2008, 47(9): 1269.
[44] Komachi Y, Sato H, Matsuura Y, et al. Opt. Lett., 2005, 30(21): 2942.
[45] Konorov S O, Addison C J, Schulze H G, et al. Opt. Lett., 2006, 31(12): 1911.
[46] Buric M P, Chen K P, Falk J, et al. Appl. Opt., 2008, 47(23): 4255.
[47] Buric M P, Chen K P, Falk J, et al. Appl. Opt., 2009, 48(22): 4424.
[48] Hanf S, Keiner R, Yan D, et al. Anal. Chem., 2014, 86(11): 5278.
[49] Hanf S, Bogozi T, Keiner R, et al. Anal. Chem., 2014, 87(2): 982.
[50] Shi L, Zhang W, Jin J, et al. Asia Communications and Photonics Conference and Exhibition. International Society for Optics and Photonics, 2010: 799008-799008-7.
[51] Du Z, Zhen W, Zhang Z, et al. Appl. Phys. B, 2016, 122(4): 1.
[52] Liu L, Xiong B, Yan Y, et al. IEEE Photonic. Tech. L., 2016, 28(15): 1613.
[53] Li J, Du Z, Zhang Z, et al. Sensor Rev., 2016, Accepted.
[54] SHI Yi-wei, ZHOU Zhi-yun, TANG Xiao-li,et al(石艺尉,周志云,汤晓黎, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2009, 28(2): 111.
[55] Ding H, Li X, Cui J, et al. Instrum Sci. Technol., 2011, 39(1): 78.
[56] Pogodina O A, Pustogov V V, de Melas F, et al. Anal. Chem., 2004, 76(2): 464.
[57] Thompson B T, Inberg A, Croitoru N, et al. Applied Spectroscopy, 2006, 60(3): 266.
[58] Frey C M, Luxenburger F, Droege S, et al. Appl. Spectrosc., 2011, 65(11): 1269.
[59] Wilk A, Seichter F, Kim S S, et al. Anal. Bioanal. Chem., 2012, 402(1): 397.
[60] Petruci J F D, Fortes P R, Kokoric V, et al. Sci. Rep-UK, 2013, 3(3174): 2045.
[61] Mizaikoff B. Chem. Soc. Rev., 2013, 42(22): 8683.
[62] Rohwedder J J R, Pasquini C, Fortes P R, et al. Analyst, 2014, 139(14): 3572.
[63] Perez-Guaita D, Kokoric V, Wilk A, et al. Journal of Breath Research, 2014, 8(2): 026003.
[64] da Silveira Petruci J F, Fortes P R, Kokoric V, et al. Analyst, 2014, 139(1): 198.
[65] Pawat J, Sugiyama T, Matsuo T, et al. Plasma Process Polym., 2007, 4(7-8): 743.
[66] Chen J, Hangauer A, Strzoda R, et al. Opt. Lett., 2010, 35(21): 3577.
[67] Chen J, Hangauer A, Strzoda R, et al. Appl. Opt., 2010, 49(28): 5254.
[68] Hangauer A, Chen J, Strzoda R, et al. Opt. Lett., 2012, 37(7): 1265.
[69] Spagnolo V, Patimisco P, Borri S, et al. Appl. Phys. B, 2013, 112(1): 25.
[70] Patimisco P, Spagnolo V, Vitiello M S, et al. Sensors, 2013, 13(10): 1329.
[71] Patimisco P, Sampaolo A, Mihai L, et al. Sensors, 2016, 16(4): 533.
[72] Chow K K, Short M, Zeng H A. Biomedical Spectroscopy and Imaging, 2012, 1(4): 339.
[73] Kim S S, Young C, Vidakovic B, et al. IEEE Sens. J., 2010, 10(1): 145.
[74] Lackner M. Rev. Chem. Eng., 2007, 23(2): 65. |
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[3] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[4] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[5] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[6] |
GUO Ya-fei1, CAO Qiang1, YE Lei-lei1, ZHANG Cheng-yuan1, KOU Ren-bo1, WANG Jun-mei1, GUO Mei1, 2*. Double Index Sequence Analysis of FTIR and Anti-Inflammatory Spectrum Effect Relationship of Rheum Tanguticum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 188-196. |
[7] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[8] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[9] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[10] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[11] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[12] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[13] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[14] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[15] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
|
|
|
|