|
|
|
|
|
|
Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration |
ZHENG Hong-quan, DAI Jing-min* |
School of Instrumental Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
|
|
|
Abstract As an important gas sensing technology to achieve high-efficiency and high-precision measurement of trace gas concentrations, photoacoustic spectroscopy is widely used in atmospheric environment detection, power system fault diagnosis in medical and health diagnosis. This paper introduces the basic principle of trace gas concentration measurement by photoacoustic spectroscopy, and the mechanism of applying photoacoustic effect to realize trace gas concentration measurement is briefly described. At the same time, trace gases based on photoacoustic spectroscopy are introduced. Structure of the concentration measuring device. Secondly, starting from the theoretical analysis of photoacoustic signal intensity, the research hotspots of domestic and foreign scholars in photoacoustic spectroscopy trace gas concentration measurement are drawn. In order to realize the stronger anti-interference ability of the trace gas concentration measurement device based on photoacoustic spectroscopy technology, more compact structure, lower detection limit, and higher detection sensitivity, the research focus of domestic and foreign scholars can be summarized as the following three points: (1) Selection and design of radiation light source to achieve better output wavelength of radiation light source, Wider tuning range, higher output power of radiation source. (2) Better photoacoustic cell design to achieve more efficient acoustic energy accumulation, more compact structure and stronger anti-interference ability. (3) The design of the sound-sensitive detector to achieve higher sound sensitivity and signal-to-noise ratio. This paper introduces the three core components of the trace gas concentration measurement device based on photoacoustic spectroscopy in detail: radiation light source, mainly introduces the application research progress of coherent light source and incoherent light source; photoacoustic cell, mainly introduces the design principle of photoacoustic cell And the application research progress of non-resonant and resonant photoacoustic cells; Microphone, mainly introduces the application research progress of condenser microphone and piezoelectric microphone, and briefly introduces the recent research hot spot quartz-enhanced photoacoustic spectroscopy technology's introduction. While introducing the current research progress in the application of radiation light sources, photoacoustic cells and microphones, the advantages of each component and the problems to be solved are analyzed. Finally, the problems of low signal-to-noise ratio, complex structure, detection sensitivity and lower detection limit are easily affected by cross-interference between mixed gases in the application of photoacoustic spectroscopy technology in trace gas concentration measurement. The development trend of the three core elements in the paper: radiation light source, photoacoustic cell, and microphone is prospected.
|
Received: 2022-06-22
Accepted: 2022-10-27
|
|
Corresponding Authors:
DAI Jing-min
E-mail: djm@hit.edu.cn
|
|
[1] Peng Z,Lee-Taylor J,Orlando J, et al. Atmos. Chem. Phys., 2019, 19: 813.
[2] Hu Y,Qiao S,He Y, et al. Opt. Express, 2021, 29: 5121.
[3] Cao Y, Wang R, Peng J, et al. Photoacoustics, 2021, 24: 100303.
[4] Wilson K,Homan K,Emelianov S. Nat. Commun., 2012, 3: 618.
[5] He K, Cao X, Shi Y, et al. IEEE Transactions on Medical Imaging, 2019, 38(2):585.
[6] Yu Xiao, Tian Xuesong. International Journal of Pressure Vessels and Piping, 2022, 196:104611.
[7] Li Z L,Wang Z,Qi Y,et al. Sensors and Actuators B: Chemical, 2017, 248: 1023.
[8] Giordano L,Ferraro L,Caroppo C F, et al. Methods X, 2022, 9: 101672.
[9] Wu Z,Zhang Y,Zhang H, et al. Measurement, 2019, 139: 411.
[10] LIU Li-xian,HUAN Hui-ting, Mandelis Andreas, et al(刘丽娴,宦惠庭,Mandelis Andreas, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(3): 684.
[11] Chen K, Guo M, Yang B, et al. IEEE Trans. Instrum. Meas., 2021, 70: 7005808.
[12] Jiang J,Wang Z,Han X, et al. IEEE Trans. Dielectr. Electr. Insul., 2019, 26: 153.
[13] Mao X,Zhou X,Zhai L, et al. Int. J. Thermophys., 2015, 36: 940.
[14] Chen T,Ma F,Zhao Y, et al. Optik, 2021, 243: 167440.
[15] Chen Y,Wang Z,Li Z, et al. Appl. Sci., 2021, 11: 12149.
[16] Dumitras D C,Petrus M,Bratu A M, et al. Molecules, 2020, 25: 1728.
[17] Yu Xiao, Lu Yuhua, Gao Qiang. International Journal of Pressure Vessels and Piping, 2021, 189:104249.
[18] Gong Z,Wu G,Jiang X, et al. Opt. Express, 2021, 29: 13600.
[19] Thaler K M,Niessner R,Haisch C. Anal. Bioanal. Chem., 2017, 409: 4719.
[20] Qian S,Tian C,Wang Z, et al. IEEE Sens. Journal, 2021, 21: 10571.
[21] Wu J,Tian X. Electrical Engineering, 2013, 14(12): 65.
[22] Okamura K,Ishiji T,Iwaki M, et al. Surface & Coatings Technology, 2007, 201(19-20): 8116.
[23] Liu J T, Jeffries J B, Hanson R K. Applied Physics B, 2004, 78: 503.
[24] PAN Wei-dong,ZHANG Jia-wei,DAI Jing-min, et al(潘卫东, 张佳薇, 戴景民, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2013, 32(6): 486.
[25] Ma Y F,He Y,Tong Y, et al. Opt. Express, 2018, 26: 32103.
[26] Qiao S D,Qu Y C,Ma Y F, et al. Sensors, 2019, 19: 4187.
[27] MA Yu-fei(马欲飞). Acta Physica Sinica(物理学报), 2021, 70(16): 160702.
[28] Jiang J,Zhao M,Ma G M, et al. IEEE Sensors Journal, 2018, 18(6): 2318.
[29] Tian X,Cao Y,Chen J, et al. Sensors, 2019, 19(4): 820.
[30] Ma G M,Zhao S J,Jiang J, et al. Scientific Reports, 2017, 7: 14961.
[31] Faiz J, Soleimani M. IEEE Transactions on Dielectrics & Electrical Insulation, 2017, 24(2): 1239.
[32] Laufer J,Jathoul A,Pule M, et al. Biomedical Opt. Express, 2013, 4: 2477.
[33] Rodrigues J,Amin A,Raghushaker C, et al. Lab. Invest., 2021, 101: 952.
[34] Yin X, Gao M, Miao R, et al. Opt. Express, 2021, 29: 34258.
[35] Angelo Sampaolo, Pietro Patimisco, Marilena Giglio, et al. Analytica Chimica Acta, 2022, 1202: 338894.
[36] Jakob Hayden, Marilena Giglio, Angelo Sampaolo, et al. Photoacoustics, 2022, 25: 100330.
[37] Zhou J,Er Z X,Gong P, et al. Infrared Physics & Technology, 2022, 123: 104186.
[38] Bell A G. American Journal of Science, 1880, s3-20(118): 305.
[39] Sigrist M W. Infrared Physics and Technology, 1995, 36(1): 415.
[40] Trager F, Coufal H, Chuang T J. Physical Review Letters, 1982, 49(23): 1720.
[41] Liu K, Yi H. Kosterev A A, et al. Review of Scientific Instruments, 2010, 81(10): 103103.
[42] Koskinen V, Fonsen J, Kauppinen J, et al. Vibrational Spectroscopy, 2006, 42(2): 239.
[43] Department of Spectroscopy and Spectral Analysis(《光谱学与光谱分析》部). Principles and Applications of Photoacoustic Spectroscopy(光声光谱法的原理和应用). Beijing: Peking University Press(北京: 北京大学出版社), 1988.
[44] YIN Qing-rui, et al(殷庆瑞,等). Photoacoustic Photothermal Technology and Its Application(光声光热技术及其应用). Beijing: Science Press(北京: 科学出版社), 1991.
[45] Rosenweig A(罗森威格). Photoacoustics and Photoacoustic Spectroscopy(光声学和光声谱学). Beijing: Science Press(北京: 科学出版社), 1986.
[46] McNaghten E D,Grant K A, Parkes A M, et al. Appl. Phys. B, 2012, 107: 861.
[47] Viegerov M L. Doki. Akad. Nauk SSSR, 1938, 19: 687.
[48] Gong Z F, Chen K, Yang Y, et al. Sensors and Actuators B: Chemical, 2018, 260: 357.
[49] Chen K, Liu S, Zhang B, et al. Optics and Lasers in Engineering, 2020, 124: 105844.
[50] Bell A G. Science, 1881, 2(49): 242.
[51] Kerr E L, Atwood J G. Appl. Opt., 1968, 7(5): 915.
[52] Bruce C W, Pinnick R G. Applied Optics, 1977, 16(7): 1762.
[53] Harren F J M, Bijnen F G C, Reuss J, et al. Applied Physics B, 1990, 50(2): 137.
[54] Jan Suchánek, Michal Dostál, Tereza Vlasáková, et al. Measurement, 2017, 101: 9.
[55] Bozoki Z, Sneider J, Szabo G, et al. Applied Physics B, 1996, 63(4): 399.
[56] Cheng H, Zhang X, Bian C, et al. AIP Advances, 2020, 10(10): 105122.
[57] Qiao Y Y, Tang L P, Gao Y, et al. Photoacoustics, 2022, 25: 100334.
[58] Liu K, Cao Y, Wang G S, et al. Sensors and Actuators B: Chemical, 2018, 277: 571.
[59] Li C Y, Guo M, Zhang B, et al. Optics and Lasers in Engineering, 2022, 149: 106792.
[60] Cattaneo H, Laurila T, Hernberg R. Appl. Phys. B, 2006, 85: 337.
[61] Snizer E. Neodymiun Glass Laser, 1964, 999.
[62] Wang J W, Zhang W, Liang L, et al. Sensors and Actuators B: Chemical, 2011, 160(1): 1268.
[63] Wang Q, Wang Z, Chang J, et al. Optics Letters, 2017, 42(11): 2114.
[64] Faist J, Capasso F, Sivco D L, et al. Science, 1994, 264: 553.
[65] Paldus B A, Spence T G, Zare R N, et al. Optics Letters, 1999, 24(3): 178.
[66] Ma Y, Lewicki R, Razeghi M, et al. Optics Express, 2013, 21(1): 1008.
[67] Cao Y, Wang R F, Peng J, et al. Photoacoustics, 2021, 24: 100303.
[68] Fabrizio Sgobba, Angelo Sampaolo, et al. Photoacoustics, 2022, 25: 100318.
[69] Waclawek J, Moser H, Lendl B. Opt. Express, 2016, 24: 6559.
[70] Wang Z, Li Z, Ren W. Opt. Express, 2016, 24: 4143.
[71] Zhu Z, Liu J, Fang Y. Journal of Physics: Conference Series, 2021, 1838(1): 012046.
[72] Dewey C F, Kamm R D, Hackett C E. Applied Physics Letters, 1973, 23(11): 633.
[73] Nodov E. Applied Optics, 1978, 17(7): 1110.
[74] Tavakoli M, Tavakoli A, Taheri M, et al. Optics & Laser Technology, 2010, 42(5): 828.
[75] Duggen L, Lopes N, Willatzen M, et al. International Journal of Thermophysics, 2011, 32(4): 774.
[76] Chen T N, Ma F X, Zhao Y, et al. Optik, 2021, 243: 167440.
[77] WANG Qiao-yun, YIN Xiang-yu, YANG Lei, et al(王巧云, 尹翔宇, 杨 磊, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(5): 1351.
[78] Gong Z F, Gao T L, Liang M, et al. Photoacoustics, 2021, 21: 100216.
[79] Xiao H P, Zhao J B, Sima C T. Photoacoustics, 2022, 26: 100353.
[80] Kreuzer L B, Kenyon N D, Patel C K N. Science, 1972, 177(4046): 347.
[81] Kreuzer L B. Journal of Applied Physics, 1971, 42(7): 2934.
[82] Yin X, Gao M, Miao R, et al. Opt. Express, 2021, 29: 34258.
[83] Liu L X, Huan H T, Li W. Photoacoustics, 2021, 21: 100228.
[84] Jane Hodgkinson, Ralph P Tatam. Measurement Science & Technology, 2013, 24: 012004.
[85] Hirschmann C B, Lehtinen J, Uotila J, et al. Appl. Phys. B, 2013, 111: 603.
[86] Glière A, Barritault P, Berthelot A, et al. Int. J. Thermophys., 2020, 41: 16.
[87] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Optics Letters, 2002, 27(21): 1902.
[88] Cao Y, Jin W, Ho L H, et al. Optics Letters, 2012, 37(2): 214.
[89] Dong L, Wu H, Zheng H, et al. Optics Letters, 2014, 39(8): 2479.
[90] Ma Y, Yu X, Yu G, et al. Applied Physics Letters, 2015, 107(2): 021106.
[91] Lin H Y, Zheng H D, et al. Photoacoustics, 2022, 25, 100321: 2213.
[92] Li S Z, Lu J C, Shang Z J, et al. Photoacoustics, 2022, 25: 100325.
[93] Russo S D, Zhou S, Zifarelli A, et al. Photoacoustics, 2020, 17: 100155.
[94] He Q, Zhang Q, Cao W, et al. Microchem Journal, 2019, 150: 104058.
[95] Sun Q M, Gao C M, Zhao B X, et al. Chin. Phys. B, 2010, 19: 118103.
[96] Hernandez-Aguilar C, Dominguez-Pacheco A, Valderrama-Bravo C, et al. Food Bioprocess Technol., 2020, 13: 2104.
[97] Bodzenta J, Pustelna B, Kleszczewski Z. Ultrasonics, 1993, 31: 315.
[98] Chen J, Zhang L, Liang Y C. IEEE Trans. on Commun., 2019, 67: 5802.
[99] Bell K, Reza P H. Opt. Lett., 2020, 45: 3427.
[100] Kitai T, Torii M, Sugie T, et al. Breast Cancer, 2014, 21: 146.
[101] Dubyk K, Pastushenko A, Nychyporuk T, et al. J. Phys. Chem. Solids, 2018, 126: 267.
[102] Lv H, Luo H, Zheng H, et al. J. Microw. Opt. Technol. Lett., 2021, 63: 2040.
[103] Ledermann N, Muralt P, Baborowski J, et al. J. Micromech. Microeng, 2004, 14: 1650.
[104] Bravo-Miranda C A, González-Vega A, Gutiérrez-Juárez G I. Appl. Phys. B, 2014, 115: 471.
[105] Keeratirawee K,Hauser P C. Anal. Chim. Acta, 2020, 1147: 165.
[106] Zheng H, Li Y, Chen Y, et al. Sensors (Basel), 2022, 22(3): 936.
|
[1] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[2] |
FU Wen-xiang, DONG Li-qiang, YANG Liu*. Research Progress on Detection of Chemical Warfare Agent Simulants and Toxic Gases by Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3653-3658. |
[3] |
CHENG Gang1, CAO Ya-nan1, TIAN Xing1, CAO Yuan2, LIU Kun2. Simulation of Airflow Performance and Parameter Optimization of
Photoacoustic Cell Based on Orthogonal Test[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3899-3905. |
[4] |
CHEN Tu-nan1, 2, LI Kang1, QIU Zong-jia1, HAN Dong1, 2, ZHANG Guo-qiang1, 2*. Simulation Analysis and Experiment Verification of Insulating Material-Based Photoacoustic Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2922-2927. |
[5] |
JIN Hua-wei1, 2, 3, WANG Hao-wei1, 2, LUO Ping1, 2, FANG Lei1, 2. Simulation Design and Performance Analysis of Two-Stage Buffer
Photoacoustic Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2375-2380. |
[6] |
LI Zhen-gang1, 2, SI Gan-shang1, 2, NING Zhi-qiang1, 2, LIU Jia-xiang1, FANG Yong-hua1, 2*, CHENG Zhen1, 2, SI Bei-bei1, 2, YANG Chang-ping1, 2. Research on Long Optical Path and Resonant Carbon Dioxide Gas
Photoacoustic Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 43-49. |
[7] |
WANG Qi, WANG Shi-chao, LIU Tai-yu, CHEN Zi-qiang. Research Progress of Multi-Component Gas Detection by Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 1-8. |
[8] |
CHEN Dong-yang1, ZHOU Li1*, YANG Fu-mo1, WANG Wei-gang2, GE Mao-fa2. Application Progress of Cavity-Enhanced Absorption Spectroscopy (CEAS) in Atmospheric Environment Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2688-2695. |
[9] |
REN Zhong1, 2*, LIU Tao1, LIU Guo-dong1, 2. Classification and Identification of Real or Fake Blood Based on OPO Pulsed Laser Induced Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2734-2741. |
[10] |
WAN Liu-jie1, 2, ZHEN Chao3, QIU Zong-jia1, LI Kang1, MA Feng-xiang3, HAN Dong1, 2, ZHANG Guo-qiang1, 2*. Research of High Precision Photoacoustic Second Harmonic Detection Technology Based on FFT Filter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 2996-3001. |
[11] |
CHEN Jie1, 2, 3, QIAN Xian-mei1, 3, LIU Qiang1, 3*, ZHENG Jian-jie1, 2, 3, ZHU Wen-yue1, 3, LI Xue-bin1, 3. Research on Optical Absorption Characteristics of Atmospheric Aerosols at 1 064 nm Wavelength[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 2989-2995. |
[12] |
XIE Ying-chao1,2, WANG Rui-feng1,2, CAO Yuan1,2, LIU Kun1*, GAO Xiao-ming1,2. Research on Detecting CO2 With Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy at 2.004 μm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2664-2669. |
[13] |
CHENG Gang1, CAO Ya-nan1, TIAN Xing1, CAO Yuan2, LIU Kun2*. Influence of Photoacoustic Cell Geometrical Shape on the Performance of Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2345-2351. |
[14] |
WANG Qiao-yun, YIN Xiang-yu, YANG Lei, XING Ling-yu. Geometrical Optimization of Resonant Ellipsoidal Photoacoustic Cell in Photoacoustic Spectroscopy System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1351-1355. |
[15] |
LIU Li-xian1, 2, 3, HUAN Hui-ting1, 2, Mandelis Andreas2, SHAO Xiao-peng1*. Multiple Dissolved Gas Analysis in Transformer Oil Based on Fourier Transform Infrared Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 684-687. |
|
|
|
|