|
|
|
|
|
|
Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2 |
1. Key Laboratory of Strategic Critical Mineral Resources,College of Earth Sciences,Hebei GEO University, Shijiazhuang 050031,China
2. Hebei Province Collaborative Innovation Center for Strategic Critical Mineral Research,Hebei GEO University,Shijiazhuang 050031,China
|
|
|
Abstract Infrared spectroscopy has characteristics of rapid, economical and highly efficient, and it is also a high-tech widely used in geological prospecting work in China and abroad in this field. By studying the differential absorption characteristics of minerals in the infrared band, infrared spectral mapping and spectral parameter analysis were carried out to determine the characteristic mineral assemblages in the mineralized area and the range of mineral spectral parameters that pointed to the center of the mineralized hydrothermal fluid. In recent years, with the development of spectral resolution and the optimization of unmixing algorithms, more and more bands have been used to extract rock and mineral information. The developed mature short-wave infrared technology(SWIR,1 100~2 500 nm)can identify the medium and hypothermia clay minerals such as kaolinite, alumite and chlorite effectively, it has established indicators in porphyry, epithermal, VMS and other deposits; Thermal infrared technology ( TIR, 6~15 μm) has better detection ability mainly for mega thermal minerals such as feldspar, quartz, garnet and pyroxene, and has an excellent performance well in skarn deposits in recent years; mid-infrared technology (MIR, 3~6 μn) is still in the research in the prospecting and exploration work in the field of geology, and amount of mineral information extraction methods has not been formed. In this study, with the development history of infrared spectroscopy technology, the causes of waveform changes in various bands, commonly used spectral parameters and their characterization meanings, four types of testing instruments, and analysis software. Chlorite, garnet and carbonate minerals are four mineral spectral features often used as prospecting indicators. It discusses the two core contents of infrared spectroscopy technology in mineral exploration work and the main problems. Finally, this paper puts forward some suggestions for the application of infrared spectroscopy technology in future geological prospecting: strengthening the verification of laws, establishing multi-band and multi-platform comprehensive spectral exploration model, and comforming a spectral database and parameter extraction standards for mining areas.
|
Received: 2022-05-27
Accepted: 2022-12-12
|
|
Corresponding Authors:
LIU Xin-xing
E-mail: liuxinxing963@163.com
|
|
[1] CHEN Hua-yong(陈华勇). Earth Science Frontiers(地学前缘),2020,27(2):99.
[2] SHEN Jun-feng,LI Sheng-rong,DU Bai-song(申俊峰,李胜荣,杜柏松,等). Bulletin of Mineralogy,Petrology and Geochemistry(矿物岩石地球化学通报),2018,37(2):157.
[3] Thompson A J B,Hauff P,Robitaille A J. Society of Economic Geologists Newsletter,1999,39:16.
[4] Clark R N,King T,Klejwa M,et al. Journal of Geophysical Research-Solid Earth and Planets,1990,95(B8):12653.
[5] Hunt G R. Geophysics,1977,42(3):501.
[6] Cooke D R, Agnew P, Hollings P, et al. Geochemistry: Exploration, Environment, Analysis, 2020, 20(2): 176.
[7] Yang K,Lian C,Huntington J F,et al. Mineralium Deposita,2005,40(3):324.
[8] LIAN Chang-yun,ZHANG Ge,YUAN Chun-hua(连长云,章 革,元春华). Mineral Deposits(矿床地质),2005,24(6):17.
[9] Chang Z S,Hedenquist J W,White N C,et al. Economic Geology,2011,106(8):1365.
[10] YANG Zhi-ming,HOU Zeng-qian,YANG Zhu-sen,et al(杨志明,侯增谦,杨竹森,等). Mineral Deposits(矿床地质),2012,31(4):699.
[11] Dalm M,Buxton M,Ruitenbeek F V. Minerals Engineering,2017,105:10.
[12] Neal L C,Wilkinson J J,Mason P J,et al. Journal of Geochemical Exploration,2017,184A:179.
[13] Uribe-Mogollon C,Maher K. Economic Geology,2018,113(6):1269.
[14] Feng Y Z,Xiao B,Li R C,et al. Ore Geology Reviews,2019,112:103062.
[15] Han J S,Chu G B,Chen H Y,et al. Ore Geology Reviews,2018,101:143.
[16] CHEN Hua-yong,ZHANG Shi-tao,CHU Gao-bin,et al(陈华勇,张世涛,初高彬,等). Acta Petrologica Sinica(岩石学报),2019,35(12):3629.
[17] Zhang S T,Chu G B,Cheng J M,et al. Ore Geology Reviews,2020,122: 103516.
[18] de Mesquita N M,Carrino T A,Neto J. Ore Geology Reviews,2019, 115: 103192.
[19] Huang Y R,Guo N,Tang J X,et al. Minerals,2021,11(1): 5.
[20] Laukamp C,Legras M,Montenegro V,et al. Mineralium Deposita,2022,57:107.
[21] Herrmann W,Blake M,Doyle M,et al. Economic Geology,2001,96(5):939.
[22] Jones S,Herrmann W,Gemmell J B. Economic Geology,2005,100(2):273.
[23] Laakso K,Peter J M,Rivard B,et al. Economic Geology,2016; 111(5):1223.
[24] Huang J H,Chen H Y,Han J S,et al. Ore Geology Reviews,2018, 100:263.
[25] ZHAO Li-qing,DENG Jun,YUAN Hai-tao, et al(赵利青,邓 军,原海涛,等). Geology and Exploration(地质与勘探),2008,44(5):58.
[26] GUO Na,HUANG Yi-ru,ZHENG Long,et al(郭 娜,黄一入,郑 龙,等). Acta Geoscientica Sinica(地球学报),2017,38(5):767.
[27] Dalm M,Buxton M,van Ruitenbeek F J A. Mathematical Geoences,2019, 51(7):849.
[28] ZHANG Yan,DUAN Shi-gang,LIU Han-lun, et al(张 炎,段士刚,刘汉仑,等). Journal of Earth Sciences and Environment(地球科学与环境学报),2021,43(6):978.
[29] Tappert M,Rivard B,Giles D,et al. Economic Geology,2011,106(2):289.
[30] Vuleta S,Legras M,Smith R E,et al. ASEG Extended Abstracts,2019,(1):1.
[31] Lampinen H M,Laukamp C,Occhipinti S A,et al. Ore Geology Reviews,2019,104: 436.
[32] LU Yan,YANG Kai,XIU Lian-cun(卢 燕,杨 凯,修连存). Geological Bulletin of China(地质通报),2017,36(10):1884.
[33] Iqbal M A,Rezaee R,Laukamp C,et al. Journal of Petroleum Science and Engineering,2022,208: 109347.
[34] Meer F,Werff H,Ruitenbeek F,et al. International Journal of Applied Earth Observation and Geo Information,2012,14(1):112.
[35] Salisbury J W,Walter L S. Journal of Geophysical Research,1989,94: 9203.
[36] Cooper B L,Salisbury J W,Killen R M,et al. Journal of Geophysical Research-Planets,2002,107(E4): 5017.
[37] Laukamp C,Rodger A,LeGras M,et al. Minerals,2021,11:347.
[38] XIU Lian-cun, ZHENG Zhi-zhong, YU Zheng-kui, et al(修连存,郑志忠,俞正奎,等). Acta Geologica Sinica(地质学报),2007,81(11):1584.
[39] NIE Feng-jun,JIANG Si-hong,ZHAO Xing-min(聂凤军,江思宏,赵省民). Geology in China(中国地质),2000,(4):38.
[40] ZHANG Ge,LIAN Chang-yun,WANG Run-sheng(章 革,连长云,王润生). Geological Bulletin of China(地质通报),2005,24(5):480.
[41] LIAN Chang-yun,ZHANG Ge,YUAN Chun-hua, et al(连长云,章 革,元春华,等). Geology in China(中国地质),2005,32(3):483.
[42] Guo Na,Thomas C,Tang J X,et al. Ore Geology Reviews,2019, 108:147.
[43] XU Chao,CHEN Hua-yong,WHITE N,et al(许 超,陈华勇,WHITE N,等). Mineral Deposits(矿床地质),2017,36(5):1013.
[44] ZHANG Shi-tao,CHEN Hua-yong,ZHANG Xiao-bo, et al(张世涛,陈华勇,张小波,等). Mineral Deposits(矿床地质),2017,36(6):1263.
[45] Chu G B,Zhang S T,Zhang X B,et al. Ore Geology Reviews,2020,122:103531.
[46] ZHAI Shi-da,DUAN Shi-gang,SUN Peng,et al(翟世达,段士刚,孙 鹏,等). Mineral Deposits(矿床地质),2022,41(1):189.
[47] GUO Dong-xu,ZHANG Hong,GAO Qing-nan,et al(郭东旭,张 弘,高卿楠,等). Rock and Mineral Analysis(岩矿测试),2022,41(1):43.
[48] HUANG Yi-ru,GUO Na,ZHENG Long,et al(黄一入,郭 娜,郑 龙,等). Acta Geoscientica Sinica(地球学报),2017,38(5):779.
[49] XIU Lian-cun,ZHENG Zhi-zhong,YIN Liang,et al(修连存,郑志忠,殷 靓,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2015,35(8):2352.
[50] LI Sheng-rong,SHEN Jun-feng,LI Lin,et al(李胜荣,申俊峰,李 林,等). Earth Science Frontiers(地学前缘),2021,28(3):76.
[51] DAI Jing-jing,ZHAO Long-xian,JIANG Qi,et al(代晶晶,赵龙贤,姜 琪,等). Acta Geologica Sinica(地质学报),2020,94(8):2520.
[52] YAN Bo-kun,WANG Run-sheng,GAN Fu-ping, et al(闫柏琨,王润生,甘甫平,等). Advances in Earth Science(地球科学进展),2005,20(10):1116.
[53] LU Yan,ZHOU Yan,ZHANG Hong-liang,et al(卢 燕,周 延,张红亮,等). Geology and Exploration(地质与勘探),2017,53(6):1039.
[54] TIAN Feng,LENG Cheng-biao,ZHANG Xing-chun,et al(田 丰,冷成彪,张兴春,等). Bulletin of Mineralogy,Petrology and Geochemistry(矿物岩石地球化学通报),2019,38(3):634.
[55] Duke E F. Geology,1994,22(7):621.
[56] Wang R,Thomas C,Laukamp C,et al. Western Australia//2015 SEG-Hobart. 2017:1153.
[57] Uribe-Mogollon C,Maher K. Economic Geology,2018,113(6):1269.
[58] Duba D,Williams-Jones A E. Economic Geology,1983,78(7):1350.
[59] Cloutier J, Piercey S J, Huntington J. Minerals,2021,11(5): 471.
[60] Geiger C A,Winkler B,Langer K. Mineralogical Magazine,1989,53(370):231.
[61] Mcaloon B P,Hofmeister A M. American Mineralogist,1995,80(11-12):1145.
[62] Cudahy T J,Wilson J,Hewson R,et al. IEEE International Symposium on Geoscience&Remote Sensing. IEEE,2001.
|
[1] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[2] |
GUO Ge1, 3, 4, ZHANG Meng-ling3, 4, GONG Zhi-jie3, 4, ZHANG Shi-zhuang3, 4, WANG Xiao-yu2, 5, 6*, ZHOU Zhong-hua1*, YANG Yu2, 5, 6, XIE Guang-hui3, 4. Construction of Biomass Ash Content Model Based on Near-Infrared
Spectroscopy and Complex Sample Set Partitioning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3143-3149. |
[3] |
ZHANG Mei-zhi1, ZHANG Ning1, 2, QIAO Cong1, XU Huang-rong2, GAO Bo2, MENG Qing-yang2, YU Wei-xing2*. High-Efficient and Accurate Testing of Egg Freshness Based on
IPLS-XGBoost Algorithm and VIS-NIR Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1711-1718. |
[4] |
WU Mu-lan1, SONG Xiao-xiao1*, CUI Wu-wei1, 2, YIN Jun-yi1. The Identification of Peas (Pisum sativum L.) From Nanyang Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1095-1102. |
[5] |
SHANG Chao-nan1, XIE Yan-li2, GAO Xiao3, ZHOU Xue-qing2, ZHAO Zhen-dong2, MA Jia-xin1, CUI Peng3, WEI Xiao-xiao3, FENG Yu-hong1, 2*, ZHANG Ming-nan2*. Research on Qualitative and Quantitative Analysis of PE and EVA in Biodegradable Materials by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3380-3386. |
[6] |
HU Yun-you1, 2, XU Liang1*, XU Han-yang1, SHEN Xian-chun1, SUN Yong-feng1, XU Huan-yao1, 2, DENG Ya-song1, 2, LIU Jian-guo1, LIU Wen-qing1. Adaptive Matched Filter Detection for Leakage Gas Based on Multi-Frame Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3307-3313. |
[7] |
GENG Ying-rui1, SHEN Huan-chao1, NI Hong-fei2, CHEN Yong1, LIU Xue-song1*. Support Vector Machine Optimized by Near-Infrared Spectroscopic
Technique Combined With Grey Wolf Optimizer Algorithm to
Realize Rapid Identification of Tobacco Origin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2830-2835. |
[8] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[9] |
ZHA Ling-ling1, 2, 3, WANG Wei2*, XIE Yu1, SHAN Chang-gong2, ZENG Xiang-yu2, SUN You-wen2, YIN Hao2, HU Qi-hou2. Observation of Variations of Ambient CO2 Using Portable FTIR
Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1036-1043. |
[10] |
LI Yan-yan1, 2, LUO Hai-jun1, 2*, LUO Xia1, 2, FAN Xin-yan1, 2, QIN Rui1, 2. Detection of Craniocerebral Hematoma by Array Scanning Sensitivity Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 392-398. |
[11] |
YANG Yun-han1, SHI Wei-xin2, QIU Jun-ting1. Study on Polarization Spectroscopy of Alteration Minerals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 948-953. |
[12] |
WANG Chao1, LI Peng-cheng2, YANG Kai1, ZHANG Tian-tian2, LIU Yi-lin2, LI Jun-hui2*. Rapid Detection of Tobacco Quality Grade and Analysis of Grade Characteristics by Using Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 943-947. |
[13] |
NING Jia-lian1, TANG Jin1, HU Tian-you1, LIU Qiang2, WANG Hao-wen1, CHEN Zhi-li1*. Study on Spectral Radiation Characteristics of Carbon Disulfide Flame Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1377-1381. |
[14] |
HU Rong1,2,LIU Wen-qing2,XU Liang2*,JIN Ling2,YANG Wei-feng2,SHEN Xian-chun2,CHENG Xiao-xiao2, WANG Yu-hao2,HU Kai2,LIU Jian-guo2. Near Infrared Spectroscopic Modeling Method for Cement Raw Meal Components by Eliminating Background Moisture[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(04): 1051-1055. |
[15] |
LI Zi-wen1, LI Zong-peng1, MAI Shu-kui1, SHENG Xiao-hui1, YIN Jian-jun1, LIU Guo-rong2, WANG Cheng-tao2, ZHANG Hai-hong3, XIN Li-bin4, WANG Jian1*. Determination of Fat in Walnut Beverage Based on Least Squares Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3916-3920. |
|
|
|
|