光谱学与光谱分析 |
|
|
|
|
|
The Fluorescence Enhancement of Mercury Detected in Food Based on Rhodamine Derivatives |
FAN Cai-ling1,2, XIE Pu-hui1, CUI Shu-min1, YANG Li-na1, SUN Qing1, AI Zhi-lu2,3* |
1. College of Science, Henan Agricultural University, Zhengzhou 450002, China 2. College of Food Science and Technology, Henan Agricultural University, Zhengzhou 450002, China 3. Collaborative Innovation Center of Henan Grain Crops, Zhengzhou 450002, China |
|
|
Abstract Recently, the problem of food security is more and more serious, and people pay attention to mercury because of the toxic of it. A new approach for the determination of mercury content in foodstuff is devised. In this paper,first, we design and synthesis a new kind of fluorescent probe whose matrix based on rhodamine B, hydrazine hydrate and hydroxy benzaldehyde. Through the analysis of H-NMR spectra of the synthesized product L1, we confirm that the synthetic substance is the adjacent carboxyl benzaldehyde hydrazone structure generation of rhodamine B. Then, we measure the fluorescence signal intensity of the probe with different concentrations of mercury ions fully upon complexation by fluorescence spectrometer and we can study the relationship between the mercury ion concentration and the fluorescence intensity and draw the standard working curve. Following, It’s time to discuss the microwave digestion processing of tea,after digestion we use the synthetic probe L1 for determination of mercury content in tea. The experimental results show that the maximum excitation wavelength of the probe and coordination compound are 568.05 and 560.00 nm, the maximum emission wavelength are 587.94 and 580.00 nm. Then we can find the best testing conditions to improve the degree of accuracy, that is: room temperature, 50% the methanol solution, 3.0 mL pH 4.0 buffer solution, in the extent of 30 min. The experimental results show that Na+, K+, Ca2+, Cu2+, Zn2+, Al3+ have little impact on the fluorescence intensity of the probe. Fe3+, Mg2+, Ba2+ has a weak enhancement to the fluorescence intensity of the probe. While a low concentrations of Hg2+ have an obviously enhanced effect on the fluorescence intensity of the probe. In contrast to other metal ions, the probe for Hg2+ has a good selectivity. Linear relationship between the magnitude of increase in fluorescence intensity and concentration of mercury ion was in the range of 5~20 ng·L-1 with detection limit (3S/N) of 1.9 ng·L-1. The proposed method was applied to determination of mercury ion in samples of tea and sausage and the obtained result and sample recovery were all satisfactory. The methods of analysis instrument has the advantages of simple structure, sensitivity, high accuracy, good selectivity and less volume of simple, without the need for enrichment, being very practical.
|
Received: 2014-06-08
Accepted: 2014-09-27
|
|
Corresponding Authors:
AI Zhi-lu
E-mail: ndfcl@sina.com
|
|
[1] LI Yong-hua, WANG Wu-yi, YANG Lin-sheng. Environmental Science,2005,26(5):187. [2] YU Zhao-shun, Chen Hai-jie, ZHANG Qin. Journal of Instrumental Analysis,2009, 28(2): 216. [3] WANG Yan-yan, SHI Zhi-qiang, ZHANG Biao. Spectroscopy and Spectral Analysis,2013,33(3):826. [4] DING Jing, CHEN Xin, SUN Shun-ting, et al. Metallurgical Analysis, 2009, 29(10): 52254. [5] Kim Ha Na, Nam Seong-Won,Swamy K M K,et al. Analyst, 2011,136(7):1339. [6] LIU Shi-qun, ZHOU Chun-yan, DU Jian-hua, et al. Chinese Journal of Analytical Chemistry,2013,41(5):732. [7] LUO Feng, CHEN Dong-mei, SHI Ya-mei, et al. Scientia Sinica Chimica,2013,43(5):592. [8] YANG Qing-hua, CHEN Chang-bao, LIU Shi-kun, et al. Journal of Analytical Science,2013,29(3): 391. [9] Moorthy Suresh, Anupama Shrivastay, Sandhya M ishra, et al. Org. Lett., 2008, 10(14): 3013. |
[1] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[2] |
HE Yan-ping, WANG Xin, LI Hao-yang, LI Dong, CHEN Jin-quan, XU Jian-hua*. Room Temperature Synthesis of Polychromatic Tunable Luminescent Carbon Dots and Its Application in Sensitive Detection of Hemoglobin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3365-3371. |
[3] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[4] |
ZHANG Peng1, 3, YANG Yi-fan1, WANG Hui1, TU Zong-cai1, 2, SHA Xiao-mei2, HU Yue-ming1*. A Review of Structural Characterization and Detection Methods of Glycated Proteins in Food Systems[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2667-2673. |
[5] |
LI Xin-xing1, 2, ZHANG Ying-gang1, MA Dian-kun1, TIAN Jian-jun3, ZHANG Bao-jun3, CHEN Jing4*. Review on the Application of Spectroscopy Technology in Food Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2333-2338. |
[6] |
LENG Jun-qiang, LAN Xin-yu, JIANG Wen-shuo, XIAO Jia-yue, LIU Tian-xin, LIU Zhen-bo*. Molecular Fluorescent Probe for Detection of Metal Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2002-2011. |
[7] |
LI Chun-ying1, WANG Hong-yi1, LI Yong-chun1, LI Jing1, CHEN Gao-le2, FAN Yu-xia2*. Application Progress of Surface-Enhanced Raman Spectroscopy for
Detection Veterinary Drug Residues in Animal-Derived Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1667-1675. |
[8] |
QIAN Duo, SU Wen-en, LIU Zhi-yuan, GAO Xiao-yu, YI Yu-xin, HU Cong-cong, LIU Bin, YANG Sheng-yuan*. Soy Protein Gold Nanocluster as an “Off-On” Fluorescent Probe for the Detection of Bacillus Anthracis Biomarkers DPA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1815-1820. |
[9] |
SHI Zhi-feng1, 2, LIU Jia2, XIAO Juan2, ZHENG Zhi-wen1*. Investigation of Novel Method for Detecting Vanillin Based on X-Ray Diffraction Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1563-1568. |
[10] |
ZHENG Li-zhen1, 2, CHENG Cong2, MA Wen-hua2, WANG Zhuo-rui2, HU Dao-dao2*. Online Detection of Water Forms and Moisture Volatilization Behavior in Earthen Relics Based on FE Fluorescence Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 383-388. |
[11] |
LÜ Chun-qiu1, SI Lu-lu1, PAN Zhao-jin2, LIANG Yang-lin1, LIAO Xiu-fen2, CHEN Cong-jin2*. Fast and Ratiometric Detection of Dimethoate Via the Dual- Emission Center Nitrogen-Doped Carbon Quantum Dots[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 468-474. |
[12] |
XU Wei-xuan1, CHEN Wen-bin2, 3*. Determination of Barium in Purple Clay Products for Food Contact by
Energy Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 475-483. |
[13] |
SUN Xu-dong1, 2, LIAO Qi-cheng1, HAN Xi3, Hasan Aydin4, XIE Dong-fu1, GONG Zhi-yuan1, FU Wei1, WANG Xin-peng1. Research on Online Detection of Tea Stalks and Insect Foreign Bodies by Near-Infrared Spectroscopy and Fluorescence Image Combined With
Electromagnetic Vibration Feeding[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 100-106. |
[14] |
ZHAI Yan-ke1, PAN Yi-xing1, XIANG Hao1, XU Li1*, ZHU Ze-ce2, LEI Mi1. Coordination Interaction of DSAZn With Quercetin and High Sensitivity Detection of Quercetin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 122-128. |
[15] |
LI Ming1*, HAN Dong-hai2*, LU Ding-qiang1, LU Xiao-xiang1, CHAI Chun-xiang1, LIU Wen3, SUN Ke-xuan1. Research Progress of Universal Model of Near-Infrared Spectroscopy in Agricultural Products and Foods Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(11): 3355-3360. |
|
|
|
|