|
|
|
|
|
|
Application Progress of Surface-Enhanced Raman Spectroscopy for
Detection Veterinary Drug Residues in Animal-Derived Food |
LI Chun-ying1, WANG Hong-yi1, LI Yong-chun1, LI Jing1, CHEN Gao-le2, FAN Yu-xia2* |
1. College of Chemistry and Life Sciences, Chifeng University, Chifeng 024000, China
2. Department of Food Science and Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
|
|
|
Abstract Animal-derived food is one of the most essential parts of human nutrient ingestion. Veterinary drugs are vital for farming and are widely used for livestock breeding and disease prevention. However, excessive veterinary drug residue has severely impacted consumers’ health, which also hinders the development of animal-derived food. In such a concern, developing a rapid and effective detecting method is important to avoid adverse effects on consumers’ health. As a trace-level detection method, surface-enhanced Raman spectroscopy (SERS) demonstrates great potential in fulfilling the rapid, effective, and sensitive demands for veterinary drug residue in animal-derived food. This work reviewed the development of the SERS-based detection method for veterinary drug residue in animal-derived food, including meat (i.e., pork, chicken, duck, and fish), dairy products, and honey products. First, this review introduced the development of SERS technology in detecting the primary veterinary drug in meat products. The veterinary drug analysis includes several aspects, for example, tetracycline, sulfonamides, enrofloxacin, hormones in poultry products, β-agonists, chloramphenicol, and levamisole in pork, dye, sulfonamides, chloramphenicol in fish products. Second, the SERS-based detection of tetracycline, aminoglycosides, penicillin, and amide alcohols in dairy products is discussed. Third, this review briefly introduced the use of SERS for chloramphenicol and tetracycline detection in honey products. Finally, the conclusion and the perspectives of the SERS detection technology in animal-derived food are provided. The SERS demonstrates broad interest in the trace-level analysis of complicated chemical components in the food industry, especially suitable for prohibited and restricted chemical substances that may be hazardous to human health, making this technology highly perspective. However, opportunities exist with challenges. Breaking through the key technical bottlenecks, establishing rapid detection strategies for veterinary drug residue in animal-derived food, and developing on-site and real-time detection protocols will be significant in food safety supervision.
|
Received: 2022-08-23
Accepted: 2023-04-03
|
|
Corresponding Authors:
FAN Yu-xia
E-mail: nancyfyx@sjtu.edu.cn
|
|
[1] CHEN Yi-zi, HU Bin(陈一资, 胡 滨). Journal of Food Science and Biotechnology(食品与生物技术学报), 2009, 28(2): 162.
[2] ZHOU Hui, CHEN Yan, CHI Qiu-chi, et al(周 晖, 陈 燕, 迟秋池, 等). Journal of Food Safety and Quality(食品安全质量检测学报), 2019, 10(10): 2889.
[3] Stöckel S, Kirchhoff J, Neugebauer U, et al. Journal of Raman Spectroscopy, 2016, 47(1): 89.
[4] Balan V, Mihai C T, Cojocaru F D, et al. Materials, 2019, 12: 2884.
[5] Zheng J, He L. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 317.
[6] Fleischmann M P, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.
[7] Kneipp K, Yang W, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.
[8] Wang K, Sun D W, Pu H, et al. Talanta, 2019, 191: 449.
[9] Jiang Y, Sun D W, Pu H, et al. Trends in Food Science & Technology, 2018, 75: 10.
[10] Nilghaz A, Mahdi Mousavi S, Amiri A, et al. Journal of Agricultural and Food Chemistry, 2022, 70(18): 5463.
[11] Wang J, Chen Q, Belwal T, et al. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(3): 2476.
[12] Yan M, Li H, Li M, et al. Journal of Agricultural and Food Chemistry, 2021, 69(47): 14049.
[13] Zhai W, You T, Ouyang X, et al. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(2): 1887.
[14] Whitnall T, Pitts N. Agricultural Commodities, 2019, 9: 96.
[15] SUN Lin, ZHANG Han, DU Yi-ping(孙 琳, 张 涵, 杜一平). Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 39(3): 455.
[16] GUO Yi-qian, WANG Hong-yan, QIN Miao, et al(郭义乾, 王红艳, 秦 苗, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2022, 59(23): 2317001.
[17] Peng Y, Liu M, Chen X, et al. Spectroscopy Letters, 2017, 50(10): 579.
[18] GUO Hong-qing, LIU Mu-hua, YUAN Hai-chao, et al(郭红青, 刘木华, 袁海超, 等). Journal of Food Safety and Quality(食品安全质量检测学报), 2017, 8(1): 169.
[19] LI Yao, LIU Mu-hua, YUAN Hai-chao, et al(李 耀, 刘木华, 袁海超, 等). Journal of Analytical Science(分析科学学报), 2018, 34(3): 367.
[20] TAO Jin-jiang, PAN Gui-gen, LIU Mu-hua, et al(陶进江, 潘桂根, 刘木华, 等). Food & Machinery(食品与机械), 2019, 35(2): 82.
[21] WANG Ting, LIU Mu-hua, YUAN Hai-chao, et al(王 婷, 刘木华, 袁海超, 等). Food Research and Development(食品研究与开发), 2020, 41(2): 135.
[22] Duan N, Qi S, Guo Y, et al. LWT, 2020, 134: 110017.
[23] SHI Si-qian, YANG Fang-wei, YAO Wei-rong, et al(施思倩, 杨方威, 姚卫蓉, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(12): 3759.
[24] XIAO Xiong-feng, SONG Yi-huan, YANG Chang-biao, et al(肖雄枫, 宋移欢, 杨昌彪, 等). Food Science and Technology(食品科技), 2020, 45(12): 318.
[25] Ji W, Yao W. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015, 144: 125.
[26] Zhang D, You H, Yuan L, et al. Analytical Chemistry, 2019, 91(7): 4687.
[27] ZHAO Jing-chen, HUANG Dan-dan, ZHU Shu-hua(赵静晨, 黄丹丹, 朱树华). Food Science(食品科学), 2020, 41(14): 294.
[28] ZHANG Zi-han, ZHAO Zhi-hui, ZHANG Yuan-yi, et al (张梓涵, 赵志慧, 张苑怡, 等). Science and Technology of Food Industry (食品工业科技), 2019, 40(16): 212.
[29] Chen J, Huang M, Kong L. Applied Surface Science, 2020, 533: 147454.
[30] Li C, Huang Y, Lai K, et al. Food Control, 2016, 65: 99.
[31] Xu T, Wang X, Huang Y, et al. Food Control, 2019, 106: 106720.
[32] Meng F, Ma X, Duan N, et al. Talanta, 2017, 165: 412.
[33] Fan W, Yang S, Gao W, et al. Microchemical Journal, 2021, 169: 106532.
[34] Zhang Y, Huang Y, Zhai F, et al. Food Chemistry, 2012, 135(2): 845.
[35] Zhang Y, Lai K, Zhou J, et al. Journal of Raman Spectroscopy, 2012, 43(9): 1208.
[36] Pei L, Huang Y, Li C, et al. Journal of Nanomaterials, 2014, 2014: 430925.
[37] Yu W, Huang Y, Pei L, et al. Journal of Nanomaterials, 2014, 2014: 796575.
[38] Song J, Huang Y, Fan Y, et al. Nanomaterials, 2016, 6: 175.
[39] Li C, Huang Y, Pei L, et al. Food Analytical Methods, 2014, 7(10): 2107.
[40] Zhang Y, Huang Y, Kang Y, et al. Food Control, 2021, 130: 108367.
[41] Pu H, Zhu H, Xu F, et al. Journal of Raman Spectroscopy, 2022, 53(4): 682.
[42] MA Hai-kuan, HAN Xiao-hong, ZHANG Cai-hua, et al(马海宽, 韩晓红, 张财华, 等). Acta Laser Biology Sinica(激光生物学报), 2014, 23(6): 560.
[43] Pan Y, Fei D, Liu P, et al. Food Analytical Methods, 2021, 14(12): 2642.
[44] Neng J, Tan J, Jia K, et al. Applied Sciences, 2017, 7: 475.
[45] Chen Y, Li X, Yang M, et al. Talanta, 2017, 167: 236.
[46] Shi Q, Huang J, Sun Y, et al. Microchimica Acta, 2018, 185(2): 1.
[47] Dhakal S, Chao K, Huang Q, et al. Sensors, 2018, 18(424): 18020424.
[48] Moreno V, Adnane A, Salghi R, et al. Talanta, 2019, 194: 357.
[49] Jiang Y, Sun D W, Pu H, et al. Talanta, 2019, 197: 151.
[50] Li N, Han S, Zhang C, et al. Analytical Sciences, 2020, 36(8): 935.
[51] Muhammad M, Yan B, Yao G, et al. ACS Applied Nano Materials, 2020, 3(7): 7066.
[52] Barveen N R, Wang T J, Chang Y H. Chemosphere, 2021, 275: 130115.
[53] Li X, Wang X, Wang L, et al. Food Analytical Methods, 2021, 14: 165.
[54] Navratilova P, Borkovcova I, Drackova M, et al. Czech Journal of Food Sciences, 2009, 27(5): 379.
[55] Marques A, Veigas B, Araújo A, et al. Scientific Reports, 2019, 9: 17922.
[56] Wu Z. Food Analytical Methods, 2019, 12(5): 1121.
[57] Liu B, Zheng S, Li H, et al. Talanta, 2022, 237: 122955.
[58] Jiang Y, Sun D W, Pu H, et al. Journal of Food Measurement and Characterization, 2020, 14(6): 3184.
[59] Nguyen A H, Ma X, Park H G, et al. Sensors and Actuators B: Chemical, 2019, 282: 765.
[60] Shi Q, Huang J, Sun Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 197: 107.
[61] Wali L A, Hasan K K, Alwan A M. Plasmonics, 2020, 15(4): 985.
[62] Kebede G, Zenebe T, Disassa H, et al. African Journal of Basic & Applied Sciences, 2014, 6(4): 87.
[63] Wang T, Wang H, Zhu A, et al. Sensors and Actuators B: Chemical, 2021, 346: 130591.
[64] Zhou H, Liang Y, Zhang J, et al. Research on Chemical Intermediates, 2022, 48(1): 117.
[65] Fang Q, Li Y, Miao X, et al. Analyst, 2019, 144(11): 3649.
[66] Hassan M M, He P, Xu Y, et al. Food Chemistry, 2022, 374: 131765.
[67] Valverde S, Ares A M, Stephen Elmore J, et al. Food Chemistry, 2022, 387: 132920.
[68] ZHANG Lu-tao, ZHOU Guang-ming, LUO Dan, et al(张璐涛, 周光明, 罗 丹, 等). Chemical Journal of Chinese Universities(高等学校化学学报), 2018, 39(8): 1662.
[69] Xiao D, Jie Z, Ma Z, et al. Microchimica Acta, 2020, 187: 593.
[70] Wang X, Chen C, Waterhouse G I N, et al. Food Chemistry, 2021, 362: 130261.
[71] Yan S, Li Y, Peng Y, et al. Journal of Food Science, 2022, 87(7): 3318.
|
[1] |
LI Chang-ming1, GU Yi-fan2, ZHANG Hong-chen1, SONG Shao-zhong3*, GAO Xun2*. The Surface Enhanced Raman Spectroscopy Characteristics of Cyromazine Molecule Based on Density Function Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1566-1570. |
[2] |
SI Min-zhen1, 2, WANG Min1, 2, LI Lun1, 2, YANG Yong-an1, 2, ZHONG Jia-ju3, YU Cheng-min3*. The Main Ingredients Analysis and Rapid Identification of Boletuses Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1648-1654. |
[3] |
HUANG Li-jun1, ZHUANG Shun-qian2, FENG Yong-wei1, YANG Fang-wei2, SUN Zhen1, XIE Yun-fei2*, XUE Qing-hai1. Simultaneous Determination of Five Banned Sartan Compounds in Antihypertensive Health Food Using Thin-Layer Chromatography Combined With Surface-Enhanced Raman Spectroscopy (TLC-SERS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1354-1363. |
[4] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[5] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[6] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[7] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[8] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[9] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[10] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[11] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[12] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
[13] |
SHI Zhi-feng1, 2, LIU Jia2, XIAO Juan2, ZHENG Zhi-wen1*. Investigation of Novel Method for Detecting Vanillin Based on X-Ray Diffraction Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1563-1568. |
[14] |
LU Yan-hua, XU Min-min, YAO Jian-lin*. Preparation and Photoelectrocatalytic Properties Study of TiO2-Ag
Nanocomposites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1112-1116. |
[15] |
WANG Yi-tao1, WU Cheng-zhao1, HU Dong1, SUN Tong1, 2*. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1298-1305. |
|
|
|
|