|
|
|
|
|
|
Preparation and Photoelectrocatalytic Properties Study of TiO2-Ag
Nanocomposites |
LU Yan-hua, XU Min-min, YAO Jian-lin* |
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
|
|
|
Abstract The rapid recombination of carriers on plasmon metal nanoparticles significantly decreases the efficiency of traditional photocatalysts. The separation of hot electrons and holes can be achieved by recombining metal and semiconductors, improving the efficiency of photocatalysis. This paper combined Ag and TiO2 nanoparticles to improve the photocatalytic activity. The enhanced mechanism of the catalytic activity was explored. The effect of energy band bending in the space charge region between TiO2-Ag nanocomposites and the built-in electric field was studied, which provided a theoretical and experimental basis for designing high-performance SPR photocatalysts. Furthermore, the photocatalysis coupling reaction of PATP and PNTP was employed to study the catalytic performance of TiO2-Ag nanocomposites. The results reveal that the introduction of TiO2 improves the SPR catalytic activity of Ag. The main reason is that introducing TiO2 can improve the separation efficiency of electrons and holes between TiO2 and Ag.
|
Received: 2021-07-13
Accepted: 2021-08-27
|
|
Corresponding Authors:
YAO Jian-lin
E-mail: jlyao@suda.edu.cn
|
|
[1] Mills A, Le Hunte S. Journal of Photochemistry and Photobiology A, 1997, 108: 1.
[2] Litter M I. Appled Catalysis B, 1999, 23: 89.
[3] Al-Ekabi H, Serpone N. Journal of Physical Chemistry, 1988, 92: 5726.
[4] Chen D, Ray A K. Chemical Engineering Science, 2001, 56: 1561.
[5] Huang M, Tso E, Datye A K, et al. Environmental Science and Technology, 1996, 30: 3084.
[6] Kudo A, Sekizawa M. Chemistry Communications, 2000, 15: 1371.
[7] Yamashita H, Harada M, Misaka J, et al. Journal of Photochemistry and Photobiology A, 2002, 148: 257.
[8] Hagfeldt A, Graetzel M. Chemical Reviews, 1995, 95: 49.
[9] Vamathevan V, Tse H, Amal R, et al. Catalysis Today, 2001, 68: 201.
[10] Chenthamarakshan C R, Rajeshwar K. Electrochemistry Communications, 2000, 2: 527.
[11] Zhou C, Xu S, Yang Y, et al. Electrochimica Acta, 2011, 56: 4308.
[12] Deng C Y, Zhang G L, Zou B, et al. Chinese Physical B, 2013, 22: 381.
[13] Tian Y, Tatsuma T. Journal of American Chemical Society, 2005, 127: 7632.
[14] Zhao L B, Zhang M, Huang Y F, et al. Journal of Physical Chemical Letters, 2014, 5: 1259.
[15] Zhang M, Zhao L B, Luo W L, et al. Journal of Physical Chemical C, 2016, 120: 11956.
[16] Huang Y F, Zhu H P, Liu G K, et al. Journal of American Chemical Society, 2010, 132: 9244.
[17] Xie W, Li Y, Sun W, et al. Journal of Photochemistry and Photobiology A, 2010, 216: 149.
[18] Zhang Z, Yates Jr J T. Chemical Reviews, 2012, 112: 5520.
[19] Van Schrojenstein Lantman E M, Deckert-Gaudig T, Mank A J, et al. Nature Nanotechnology, 2012, 7: 583.
[20] Sun M T, Xu H X. Small, 2012, 8: 2777.
[21] Zhao L B, Zhang M, Huang Y F, et al. Journal of Physical Chemical Letters, 2014, 5: 1259.
[22] Ren X Q, Tan E Z, Lang X F, et al. Physical Chemistry Chemical Physics, 2013, 15: 14196.
|
[1] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[2] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[3] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[4] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[5] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[6] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[7] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[8] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[9] |
LI Chun-ying1, WANG Hong-yi1, LI Yong-chun1, LI Jing1, CHEN Gao-le2, FAN Yu-xia2*. Application Progress of Surface-Enhanced Raman Spectroscopy for
Detection Veterinary Drug Residues in Animal-Derived Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1667-1675. |
[10] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
[11] |
WANG Yi-tao1, WU Cheng-zhao1, HU Dong1, SUN Tong1, 2*. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1298-1305. |
[12] |
LI Wei1, 2, HE Yao1, 2, LIN Dong-yue2, DONG Rong-lu2*, YANG Liang-bao2*. Remove Background Peak of Substrate From SERS Signals of Hair Based on Gaussian Mixture Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 854-860. |
[13] |
HAN Xiao-long1, LIN Jia-sheng2, LI Jian-feng2*. SERS Analysis of Urine for Rapid Estimation of Human Energy Intake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 489-494. |
[14] |
HE Yao1, 2, LI Wei1, 2, DONG Rong-lu2, QI Qiu-jing3, LI Ping5, LIN Dong-yue2*, MENG Fan-li4, YANG Liang-bao2*. Surface Enhanced Raman Spectroscopy Analysis of Fentanyl in Urine Based on Voigt Line[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 85-92. |
[15] |
GU Yi-fan1, LIAN Shuai1, GAO Xun1*, SONG Shao-zhong2*, LIN Jing-quan1. Effect of Au Polymer Adsorption Sites on Surface Enhanced Raman Spectroscopy of Amitrole Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3709-3713. |
|
|
|
|