光谱学与光谱分析 |
|
|
|
|
|
Fluorescence Determination of Trace Se with the Hydride-KI3-Rhodamine 6G System |
LIANG Ai-hui1, LI Yuan1, HUANG Shan-shan1, LUO Yang-he1, 2, WEN Gui-qing1, JIANG Zhi-liang1* |
1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Conservation of Ministry of Education, Guangxi Normal University, Guilin 541004, China 2. Hezhou University, Hezhou 542899, China |
|
|
Abstract Se is a necessary trace element for human and animals, but the excess intake of Se caused poison. Thus, it is very important to determination of Se in foods and water. The target of this study is development of a new, sensitive and selective hydride generation-molecular fluorescence method for the determination of Se. In 0.36 mol·L-1 sulfuric acid, NaBH4 as reducing agent, Se (Ⅳ) is reduced to H2Se. Using I-3 solution as absorption liquid, I-3 is reduced to I- by H2Se. When adding rhodamine 6G, Rhodamine 6G and I-3 form association particles,which lead to the fluorescence intensity decreased . When Se(Ⅳ) existing, Rhodamine 6G and I-3 bind less, And the remaining amount of Rhodamine 6G increase. So the fluorescence intensity is enhanced. The analytical conditions were optimized, a 0.36 mol·L-1 H2SO4,21.6 g·L-1 NaBH4,23.3 μmol·L-1 rhodamine 6G, and 50 μmol·L-1 KI3 were chosen for use. When the excitation wavelength is at 480nm, the Rayleigh scattering peak does not affact the fluorescence recording, and was selected for determination of Se. Under the selected conditions, Se(Ⅳ) concentration in the 0.02~0.60 μg·mL-1 range and the increase value of the fluorescence intensity (ΔF) at 562 nm linear relationship. The linear regression equation is ΔF562 nm=12.6c+20.9. The detection limit was 0.01 μg·mL-1. The influence of coexistence substances on the hydride generation-molecular fluorescence determination of 5.07×10-6 mol·L-1 Se(Ⅳ) was considered in details. Results showed that this new fluorescence method is of high selectivity, that is, 0.5 mmol·L-1 Ba2+, Ca2+, Zn2+ and Fe3+, 0.25 mmol·L-1 Mg2+, 0.05 mmol·L-1 K+, 0.2 mmol·L-1 Al3+, 0.025 mmol·L-1 Te(Ⅵ) do not interfere with the determination. The influence of Hg2+, Cd2+ and Cu2+ that precipitate with Se(Ⅳ), can be eliminated by addition of complex reagent. This hydride generation-molecular fluorescence method has been applied to determination of trace Se in water samples, with a recovery of 91.8%~107.1%.
|
Received: 2014-01-13
Accepted: 2014-05-05
|
|
Corresponding Authors:
JIANG Zhi-liang
E-mail: zljiang@mailbox.gxnu.edu.cn
|
|
[1] Schrauzer G N, white D A, Schneider C J. Bioinorganic Chem., 1977, 7(1): 23. [2] LIU Chang-jiu, YANG Xi-qun, LIU Ji-sheng(刘长久,杨细群,刘继声). Chin. J. Anal. Chem.(分析化学), 2001,29(9):1030. [3] XIE Hong-zhi, CHEN Liang, ZHOU Ji-kan(解宏智,陈 亮,周纪侃). J. Anal. Instru.(分析测试学报),1998,17(1):61. [4] ZHANG Jun, FU Ting-zhi, CAO You-qin(章 军,傅庭治,曹幼琴). Chin. J. Anal. Chem.(分析化学),1995, 23(1): 49. [5] Robert S B, Lewis L J, Craig C F. Anal. Chem.,1972, 44(13): 2195. [6] Hossain M D. Talanta,2012, 88(1): 30. [7] Luo G. Anal. Lett.,2012, 45(17): 2493. [8] Sengupta M K, Dasgupta P K. Anal. Chem.,2011, 83(24): 9378. [9] Ohira S I, Idowu A D, Dasgupta P K. Anal. Chem.,2010, 82(9): 3467. [10] Wang Y, Xie J. Talanta, 2013, 112(8): 123. [11] Cobo-Fernandez M G, Palacios M A. Fresenius J Anal. Chem.,1995, 351(4-5): 438. [12] Liang A H, Wei Y Y, Wen G Q, et al. RSC Advances, 2013, 3(31): 12585. [13] FAN Zhi-hong(樊智虹). Chin. J. Environ. Sci. Technology(环境科学与技术), 2011, 34(1): 117. |
[1] |
ZHU Shao-hao1, SUN Xue-ping1, TAN Jing-ying1, YANG Dong-xu1, WANG Hai-xia2*, WANG Xiu-zhong1*. Study on a New Sensing Method of Colorimetric and Fluorescence Dual Modes for Pesticide Residue[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2785-2791. |
[2] |
GUO He-qing1, 2, ZHANG Sheng-zi2*, LIU Xiao-meng2, JING Xu-feng1, WANG Hong-jun2. Research Progress of the Real-Time Detection System of Bioaerosols Based on Fluorescence Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2339-2347. |
[3] |
OU Li-juan1*, LI Jing1, ZHANG Chao-qun1, LUO Jian-xin1, WEI Ji1, WANG Hai-bo2*, ZHANG Chun-yan1. Redox-Controlled Turn-on Fluorescence Sensor for H2O2 and Glucose Using DNA-Template Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3757-3761. |
[4] |
LIU Pan1, 2, DU Mi-fang1, LI Zhi-ya1, GAO Ling-qing1, 3, HAN Hua-yun4, ZHANG Xin-yao1, 3. Determination of Trace Tellurium Content in Steel by Hydride Generation Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3103-3108. |
[5] |
ZHENG Pei-chao, LIU Ran-ning, WANG Jin-mei, FENG Chu-hui, HE Yu-tong, WU Mei-ni, HE Yu-xin. Solution Cathode Glow Discharge-Atomic Emission Spectroscopy Coupled With Hydride Generation for Detecting Trace Mercury and Tin in Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1139-1143. |
[6] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 470-477. |
[7] |
LI Ai-yang1, FU Liang2*. Study on the Analysis Total As in Bentonite With Microwave Plasma Atomic Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3671-3675. |
[8] |
WEI Yi-hua1, HUANG Qing-qing2, ZHANG Jin-yan1*, QIU Su-yan1, 3, TU Tian-hua1, YUAN Lin-feng1, DAI Ting-can1, ZHANG Biao-jin1, LI Wei-hong1, YAN Han1. Determination of 5 Kinds of Selenium Species in Livestock and Poultry Meat With Ion Pair Reversed Phase Liquid Chromatography-Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3822-3827. |
[9] |
FU Xing-hu, WANG Zhen-xing, MA Shuang-yu, ZHAO Fei, LU Xin, FU Guang-wei, JIN Wa, BI Wei-hong. Preparation and Properties of Micro-Cavity Silver Modified Fiber SERS Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2800-2806. |
[10] |
KU Ya-lun1, YANG Ming-xing1, 2*, LIU Jia1, XU Xing1. Spectral Study on Natural Seleniumin Turquoise From Shiyan, Hubei Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 2251-2257. |
[11] |
CHEN Hai-jie1, 2, MA Na1, 2, BO Wei1, 2, ZHANG Ling-huo1, 2, BAI Jin-feng1,2, SUN Bin-bin1, 2, ZHANG Qin1, 2, YU Zhao-shui1, 2*. Research on the Valence State Analysis Method of Selenium in Soil and Stream Sediment[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 871-874. |
[12] |
ZHANG Xin-bo1, CONG Long-zhuang1, YANG Lan-lan1, DU Zhong-lin1, WANG Yao1, WANG Yan-xin1, HUANG Lin-jun1, GAO Fan1, Laurence A. Belfiore2, TANG Jian-guo1*. Optimal Fluorescence Property of CdSe Quantum Dots and Electrospinning Polyvinylpyrrolidone Hybrid Microfibers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 990-996. |
[13] |
LIU Yan-yan1, TAO Ning-ping1, 2, 3, WANG Xi-chang1, 2, 3, LU Ying1, 2, 3*,XU Chang-hua1, 2, 3*. Integrated Detection of Foodborne Pathogens by In-Situ Infrared Spectroscopy Based on ZnSe Film Transmission Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 419-424. |
[14] |
OU Li-juan, AN Xue-zhong, LUO Jian-xin, WANG Ling-yun, BO Heng, SUN Ai-ming, CHEN Lan-lan. High-Sensitive and Rapid Fluorescencet Detection of Hg2+ Based on Poly(adenine)-Templated Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 164-167. |
[15] |
CHEN Hai-jie1, 2, MA Na1, 2, BAI Jin-feng1, 2, CHEN Da-lei3, GU Xue1, 2, YU Zhao-shui1, 2, SUN Bin-bin1, 2, ZHANG Qin1, 2*. Study on Determination of Se in Geochemical Samples by External Supply H2-Hydride Generation Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2896-2900. |
|
|
|
|