|
|
|
|
|
|
Molecular Fluorescent Probe for Detection of Metal Ions |
LENG Jun-qiang, LAN Xin-yu, JIANG Wen-shuo, XIAO Jia-yue, LIU Tian-xin, LIU Zhen-bo* |
College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
|
|
|
Abstract The safety and health of organisms have always been a concern. Metal ions exist in organisms and have an important impact on the health and disease of organisms. However, the human body environment is complex, and the specific mechanism of metal ions in the human body is still unclear. Therefore, finding a way to detect metal ions in the human body is of great significance for exploring their role in the human body. Molecular fluorescent probes are generally composed of three parts: recognition group, fluorescent group and linking group. It mainly uses the interaction between the probe recognition group and metal ions to change the structure of the fluorescent probe, thereby causing changes in fluorescence properties to detect metals ion. The changes in these fluorescence properties involve different fluorescence mechanisms, such as the photo-induced electron transfer (PET) mechanism. Fluorescence will appear fluorescence quenching phenomenon due to the PET mechanism, and on-off or off-on fluorescent probes can be designed according to this mechanism; The intramolecular charge transfer (ICT) mechanism is suitable for the design of ratiometric fluorescent probes due to the red-shift or blue-shift caused by the reaction between the probe and the detector. Fluorescence imaging technology has developed rapidly due to its specific and high-sensitivity identification ability and the advantages of real-time monitoring in vivo. It has been widely used in detecting active substances in vivo, and many metals ion probes have also been reported. This paper is mainly based on detecting different types of common metal ions such as copper ions, iron ions, zinc ions, mercury ions, etc., to study their content in the organism. Cholesterol probes and novel open-type near-infrared fluorescent probes for the detection of copper ions are reviewed, based on redox properties and the mechanism of linking N-oxide groups with unique Fe2+ deoxygenation to fluorophores to specifically recognize Fe2+. Design a fluorescent probe for detecting iron ions, construct a fluorescent probe for detecting mercury ions based on the deprotection reaction of thiocarboxaldehyde, fluorescent probes for zinc ions based on ICT and ESIPT effects, quinoline fluorescent probes for detecting magnesium ions, and fluorescent probes for detecting cadmium ions The advantages and disadvantages, design mechanism, mechanism of action, research progress and biological properties of different types of fluorescent probes for detecting metal ions in the past three years are reviewed. Application and prospect of fluorescent probes for unmonitored metal ions.
|
Received: 2022-02-13
Accepted: 2022-09-01
|
|
Corresponding Authors:
LIU Zhen-bo
E-mail: zhenboliu@foxmail.com
|
|
[1] Wang H, Shi D L, Li J, et al. Sensors and Actuators B: Chemical, 2018, 256: 600.
[2] Bodduluri S, Nakhmani A, Reinhardt J M, et al. JCI Insight, 2020, 5(13): e132781.
[3] Ferreira S L C, Bezerra M A, Santos A S, et al. TrAC Trends in Analytical Chemistry, 2018, 100: 1.
[4] Zeng W, Hu Z, Luo J, et al. Analytica Chimica Acta, 2022, 1191: 339361.
[5] Feng L, Wang J, Li H, et al. Analytica Chimica Acta, 2017, 984: 66.
[6] Onopiuk A, Kołodziejczak K, Marcinkowska-Lesiak M, et al. Food Chemistry, 2022, 373: 131506.
[7] Zu W, Yang Y, Wang Y, et al. Microchemical Journal, 2018, 137: 266.
[8] Tehrani M H, Companys E, Dago A, et al. Science of The Total Environment, 2018, 612: 269.
[9] Fang Y, Zhou Y, Rui Q, et al. Organometallics, 2015, 34(12): 2962.
[10] REN Chun-ping, NIE Wen, LENG Jun-qiang, et al(任春平, 聂 雯, 冷俊强, 等). Progress in Chemistry(化学进展), 2021, 33(6): 942.
[11] Li F Z, Yin J F, Kuang G C. Coordination Chemistry Reviews, 2021, 448: 214157.
[12] Li M, Li Y, Wang X, et al. Chinese Chemical Letters, 2019, 30(10): 1682.
[13] Povedailo V A, Lysenko I L, Tikhomirov S A, et al. Journal of Fluorescence, 2020, 30(3): 629.
[14] Wang G, Liu Y, Zhang L, et al. Food Chemistry, 2020, 304: 125446.
[15] Li Y, Zhou Y, Yue X, et al. Bioactive Materials, 2021, 6(3): 794.
[16] Dadashi-Silab S, Doran S, Yagci Y. Chemical Reviews, 2016, 116(17): 10212.
[17] Gao H, Gao Y, Wang C, et al. ACS Applied Materials & Interfaces, 2018, 10(17): 14956.
[18] Guo C, Zhai J, Wang Y, et al. Analytical Chemistry, 2021, 93(23): 8128.
[19] Chen L, Fu P Y, Wang H P, et al. Advanced Optical Materials, 2021, 9(23): 2001952.
[20] Juvekar V, Cho M K, Lee H W, et al. Chemical Communications, 2021, 57(71): 8929.
[21] Yi X Q, He Y F, Cao Y S, et al. ACS Sensors, 2019, 4(4): 856.
[22] Ting J, Mei F, Mengyao Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117530.
[23] Wu X, Wang H, Yang S, et al. Food Chemistry, 2019, 284: 23.
[24] Shen Y, Zheng W, Yao Y, et al. Chemistry—An Asian Journal, 2020, 15(18): 2864.
[25] Gao G, Wang X, Wang Z, et al. Talanta, 2020, 215: 120908.
[26] Khatun S, Biswas S, Binoy A, et al. Journal of Photochemistry and Photobiology B: Biology, 2020, 209: 111943.
[27] Hirayama T, Niwa M, Hirosawa S, et al. ACS Sensors, 2020, 5(9): 2950.
[28] Hirayama T, Inden M, Tsuboi H, et al. Chemical Science, 2019, 10(5): 1514.
[29] Ravichandiran P, Boguszewska-Czubara A, Masłyk M, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17210.
[30] Gu X, Zhang X, Liu Z, et al. Journal of Luminescence, 2019, 207: 613.
[31] Wang Z, Zhang Y, Yin J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12348.
[32] Wang Y, Gao M, Liao C, et al. Sensors and Actuators B: Chemical, 2019, 301: 127038.
[33] Zhang C, Zhang H, Li M, et al. Talanta, 2019, 197: 218.
[34] Malek A, Bera K, Biswas S, et al. Analytical Chemistry, 2019, 91(5): 3533.
[35] Wang Y, Xia C, Han Z, et al. Journal of Photochemistry and Photobiology B: Biology, 2019, 199: 111602.
[36] Liu D, Zhang T, Zhang M, et al. Bioorganic & Medicinal Chemistry Letters, 2020, 30(8): 127073.
[37] Kang T, Wang H, Wang X, et al. Microchemical Journal, 2019, 148: 442.
[38] Fu Z H, Qin J C, Wang Y W, et al. Dyes and Pigments, 2021, 185: 108896.
[39] Ravichandiran P, Boguszewska-Czubara A, Masłyk M, et al. Dyes and Pigments, 2020, 172: 107828.
[40] Chen C, Zhou L, Liu F, et al. Journal of Hazardous Materials, 2020, 386: 121943.
[41] Ravichandiran P, Kaliannagounder V K, Bella A P, et al. Analytical Chemistry, 2021, 93(2): 801.
[42] Adhikari S, Ta S, Ghosh A, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372: 49.
[43] Yan L, Zhang S, Xie Y, et al. Dyes and Pigments, 2020, 175: 108190.
[44] Guo H, Chen T, Liang Z, et al. Chemosphere, 2021, 263: 128270.
[45] Jaklová Dytrtová J, Bělononíková K, Jakl M, et al. Environ. Pollut., 2020, 266(1): 115201.
[46] Huang S, Wang W, Cheng J, et al. Microchemical Journal, 2020, 159: 105494.
[47] Xie Y F, Jiang Y J, Zou H Y, et al. Talanta, 2020, 220: 121430.
[48] Lin Z Y, Xue S F, Chen Z H, et al. Analytical Chemistry, 2018, 90(13): 8248.
[49] Nan X, Huyan Y, Li H, et al. Coordination Chemistry Reviews, 2021, 426: 213580.
[50] Rahimi H, Hosseinzadeh R, Tajbakhsh M. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407: 113049.
[51] Yu C, Chen L, Zhang J, et al. Talanta, 2011, 85(3): 1627.
[52] Yu C, Zhang J, Li J, et al. Microchimica Acta, 2011, 174(3): 247.
[53] Yang X, Liu X, Li Y, et al. Biosensors and Bioelectronics, 2016, 80: 288.
[54] Wu S P, Chen Y P, Sung Y M. Analyst, 2011, 136(9): 1887.
[55] Wang R, Yu F, Liu P, et al. Chemical Communications, 2012, 48(43): 5310.
[56] Qin Z, Su W, Liu P, et al. ACS Omega, 2021, 6(38): 25040.
[57] Guo X, Huang J, Wei Y, et al. Journal of Hazardous Materials, 2020, 381: 120969.
[58] Han L, Liu S G, Dong X Z, et al. Journal of Hazardous Materials, 2019, 376: 170.
[59] Zhu Q, Liu L, Xing Y, et al. Journal of Hazardous Materials, 2018, 355: 50.
[60] Zhao L, Zhang Z, Liu Y, et al. Journal of Hazardous Materials, 2020, 385: 121556.
[61] Muthusamy S, Rajalakshmi K, Zhu D, et al. Sensors and Actuators B: Chemical, 2021, 346: 130534.
[62] Gauthama B, Narayana B, Sarojini B, et al. Microchemical Journal, 2021, 166: 106233.
[63] Zhou Z, Ding Y, Si S, et al. Journal of Hazardous Materials, 2021, 417: 125975.
[64] Mehta P K, Jeon J, Ryu K, et al. Journal of Hazardous Materials, 2022, 427: 128161.
[65] Chen Y, Bai Y, Han Z, et al. Chemical Society Reviews, 2015, 44(14): 4517.
[66] Barr Chelsea A, Burdette Shawn C. Essays in Biochemistry, 2017, 61(2): 225.
[67] Zhang C, Liu M, Liu S, et al. Inorganic Chemistry, 2018, 57(17): 10625.
[68] Donadio G, Di Martino R, Oliva R, et al. Journal of Material Chemistry B, 2016, 4(43):6979.
[69] Bi X Y, Wang Y Y, Wang D D, et al. RSC Advances, 2020, 10(45): 26874.
[70] Fujii T, Shindo Y, Hotta K, et al. Journal of the American Chemical Society, 2014, 136(6): 2374.
[71] Peng H, Cui B, Li G, et al. Materials Science and Engineering: C, 2015, 46: 253.
[72] Díaz Nieto C H, Palacios N A, Verbeeck K, et al. Water Research, 2019, 154: 117.
[73] Zhang Y, Hu Y, Wang L, et al. Minerals Engineering, 2019, 139: 105868.
[74] Zheng A, Liu H, Gao X, et al. Analytical Chemistry, 2021, 93(26): 9244.
[75] Sil A, Maity A, Giri D, et al. Sensors and Actuators B: Chemical, 2016, 226: 403.
[76] Zhang Y, Zhao Y, Shi L, et al. Analyst, 2020, 145(16): 5631.
[77] Wang Q, Chen Q, Li C, et al. Microchemical Journal, 2020, 153: 104503.
[78] Heo G, Manivannan R, Kim H, et al. Sensors and Actuators B: Chemical, 2019, 297: 126723.
[79] Zhang Y, Zhang L. Journal of Hazardous Materials, 2021, 418: 126271.
[80] Zeng Z, Ma R, Liu C, et al. Sensors and Actuators B: Chemical, 2017, 250: 267.
[81] Qi J, Yao Q, Qian K, et al. European Journal of Medicinal Chemistry, 2018, 154: 91.
|
[1] |
YANG Guang1, JIN Chun-bai1, REN Chun-ying2*, LIU Wen-jing1, CHEN Qiang1. Research on Band Selection of Visual Attention Mechanism for Object
Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 266-274. |
[2] |
YI Min-na1, 2, 3, CAO Hui-min1, 2, 3*, LI Shuang-na-si1, 2, 3, ZHANG Zhu-shan-ying1, 2, 3, ZHU Chun-nan1, 2, 3. A Novel Dual Emission Carbon Point Ratio Fluorescent Probe for Rapid Detection of Lead Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3788-3793. |
[3] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[4] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[5] |
HE Yan-ping, WANG Xin, LI Hao-yang, LI Dong, CHEN Jin-quan, XU Jian-hua*. Room Temperature Synthesis of Polychromatic Tunable Luminescent Carbon Dots and Its Application in Sensitive Detection of Hemoglobin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3365-3371. |
[6] |
DONG Jian-jiang1, TIAN Ye1, ZHANG Jian-xing2, LUAN Zhen-dong2*, DU Zeng-feng2*. Research on the Classification Method of Benthic Fauna Based on
Hyperspectral Data and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3015-3022. |
[7] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[8] |
ZHANG Yue1, 3, ZHOU Jun-hui1, WANG Si-man1, WANG You-you1, ZHANG Yun-hao2, ZHAO Shuai2, LIU Shu-yang2*, YANG Jian1*. Identification of Xinhui Citri Reticulatae Pericarpium of Different Aging Years Based on Visible-Near Infrared Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3286-3292. |
[9] |
YANG Dong-feng1, HU Jun2*. Accurate Identification of Maize Varieties Based on Feature Fusion of Near Infrared Spectrum and Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2588-2595. |
[10] |
LI Shu-fei1, LI Kai-yu1, QIAO Yan2, ZHANG Ling-xian1*. Cucumber Disease Detection Method Based on Visible Light Spectrum and Improved YOLOv5 in Natural Scenes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2596-2600. |
[11] |
LI Wen-xia1, DU Yu-jun2, WANG Yue1, LIU Zheng-dong3*, ZHENG Jia-hui1, DU Wen-qian1, WANG Hua-ping4. Research on On-Line Efficient Near-Infrared Spectral Recognition and Automatic Sorting Technology of Waste Textiles Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2139-2145. |
[12] |
QIAN Duo, SU Wen-en, LIU Zhi-yuan, GAO Xiao-yu, YI Yu-xin, HU Cong-cong, LIU Bin, YANG Sheng-yuan*. Soy Protein Gold Nanocluster as an “Off-On” Fluorescent Probe for the Detection of Bacillus Anthracis Biomarkers DPA[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1815-1820. |
[13] |
ZHANG Qi-yan1, YANG Jie2, 3, LI Jian-guo1*, SHI Wei-xin1, GAO Peng-xin1. Research on Quantitative Identification of Rock Color Using
Spectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1905-1911. |
[14] |
ZHENG Zhi-jie1, LIN Zhen-heng1, 2*, XIE Hai-he2, NIE Yong-zhong3. The Method of Terahertz Spectral Classification and Identification for Engineering Plastics Based on Convolutional Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1387-1393. |
[15] |
LI Zhi1, WANG Xia1*, XU Can1*, LI Peng2, HUO Yu-rong1, FU Jing-yu1, WANG Pei1, FENG Fei3. Review of Spectral Characterization and Identification of Unresolved Space Objects[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1329-1339. |
|
|
|
|