Abstract The safety and health of organisms have always been a concern. Metal ions exist in organisms and have an important impact on the health and disease of organisms. However, the human body environment is complex, and the specific mechanism of metal ions in the human body is still unclear. Therefore, finding a way to detect metal ions in the human body is of great significance for exploring their role in the human body. Molecular fluorescent probes are generally composed of three parts: recognition group, fluorescent group and linking group. It mainly uses the interaction between the probe recognition group and metal ions to change the structure of the fluorescent probe, thereby causing changes in fluorescence properties to detect metals ion. The changes in these fluorescence properties involve different fluorescence mechanisms, such as the photo-induced electron transfer (PET) mechanism. Fluorescence will appear fluorescence quenching phenomenon due to the PET mechanism, and on-off or off-on fluorescent probes can be designed according to this mechanism; The intramolecular charge transfer (ICT) mechanism is suitable for the design of ratiometric fluorescent probes due to the red-shift or blue-shift caused by the reaction between the probe and the detector. Fluorescence imaging technology has developed rapidly due to its specific and high-sensitivity identification ability and the advantages of real-time monitoring in vivo. It has been widely used in detecting active substances in vivo, and many metals ion probes have also been reported. This paper is mainly based on detecting different types of common metal ions such as copper ions, iron ions, zinc ions, mercury ions, etc., to study their content in the organism. Cholesterol probes and novel open-type near-infrared fluorescent probes for the detection of copper ions are reviewed, based on redox properties and the mechanism of linking N-oxide groups with unique Fe2+ deoxygenation to fluorophores to specifically recognize Fe2+. Design a fluorescent probe for detecting iron ions, construct a fluorescent probe for detecting mercury ions based on the deprotection reaction of thiocarboxaldehyde, fluorescent probes for zinc ions based on ICT and ESIPT effects, quinoline fluorescent probes for detecting magnesium ions, and fluorescent probes for detecting cadmium ions The advantages and disadvantages, design mechanism, mechanism of action, research progress and biological properties of different types of fluorescent probes for detecting metal ions in the past three years are reviewed. Application and prospect of fluorescent probes for unmonitored metal ions.
Corresponding Authors:
LIU Zhen-bo
E-mail: zhenboliu@foxmail.com
Cite this article:
LENG Jun-qiang,LAN Xin-yu,JIANG Wen-shuo, et al. Molecular Fluorescent Probe for Detection of Metal Ions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2002-2011.
[1] Wang H, Shi D L, Li J, et al. Sensors and Actuators B: Chemical, 2018, 256: 600.
[2] Bodduluri S, Nakhmani A, Reinhardt J M, et al. JCI Insight, 2020, 5(13): e132781.
[3] Ferreira S L C, Bezerra M A, Santos A S, et al. TrAC Trends in Analytical Chemistry, 2018, 100: 1.
[4] Zeng W, Hu Z, Luo J, et al. Analytica Chimica Acta, 2022, 1191: 339361.
[5] Feng L, Wang J, Li H, et al. Analytica Chimica Acta, 2017, 984: 66.
[6] Onopiuk A, Kołodziejczak K, Marcinkowska-Lesiak M, et al. Food Chemistry, 2022, 373: 131506.
[7] Zu W, Yang Y, Wang Y, et al. Microchemical Journal, 2018, 137: 266.
[8] Tehrani M H, Companys E, Dago A, et al. Science of The Total Environment, 2018, 612: 269.
[9] Fang Y, Zhou Y, Rui Q, et al. Organometallics, 2015, 34(12): 2962.
[10] REN Chun-ping, NIE Wen, LENG Jun-qiang, et al(任春平, 聂 雯, 冷俊强, 等). Progress in Chemistry(化学进展), 2021, 33(6): 942.
[11] Li F Z, Yin J F, Kuang G C. Coordination Chemistry Reviews, 2021, 448: 214157.
[12] Li M, Li Y, Wang X, et al. Chinese Chemical Letters, 2019, 30(10): 1682.
[13] Povedailo V A, Lysenko I L, Tikhomirov S A, et al. Journal of Fluorescence, 2020, 30(3): 629.
[14] Wang G, Liu Y, Zhang L, et al. Food Chemistry, 2020, 304: 125446.
[15] Li Y, Zhou Y, Yue X, et al. Bioactive Materials, 2021, 6(3): 794.
[16] Dadashi-Silab S, Doran S, Yagci Y. Chemical Reviews, 2016, 116(17): 10212.
[17] Gao H, Gao Y, Wang C, et al. ACS Applied Materials & Interfaces, 2018, 10(17): 14956.
[18] Guo C, Zhai J, Wang Y, et al. Analytical Chemistry, 2021, 93(23): 8128.
[19] Chen L, Fu P Y, Wang H P, et al. Advanced Optical Materials, 2021, 9(23): 2001952.
[20] Juvekar V, Cho M K, Lee H W, et al. Chemical Communications, 2021, 57(71): 8929.
[21] Yi X Q, He Y F, Cao Y S, et al. ACS Sensors, 2019, 4(4): 856.
[22] Ting J, Mei F, Mengyao Z, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 227: 117530.
[23] Wu X, Wang H, Yang S, et al. Food Chemistry, 2019, 284: 23.
[24] Shen Y, Zheng W, Yao Y, et al. Chemistry—An Asian Journal, 2020, 15(18): 2864.
[25] Gao G, Wang X, Wang Z, et al. Talanta, 2020, 215: 120908.
[26] Khatun S, Biswas S, Binoy A, et al. Journal of Photochemistry and Photobiology B: Biology, 2020, 209: 111943.
[27] Hirayama T, Niwa M, Hirosawa S, et al. ACS Sensors, 2020, 5(9): 2950.
[28] Hirayama T, Inden M, Tsuboi H, et al. Chemical Science, 2019, 10(5): 1514.
[29] Ravichandiran P, Boguszewska-Czubara A, Masłyk M, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(20): 17210.
[30] Gu X, Zhang X, Liu Z, et al. Journal of Luminescence, 2019, 207: 613.
[31] Wang Z, Zhang Y, Yin J, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(33): 12348.
[32] Wang Y, Gao M, Liao C, et al. Sensors and Actuators B: Chemical, 2019, 301: 127038.
[33] Zhang C, Zhang H, Li M, et al. Talanta, 2019, 197: 218.
[34] Malek A, Bera K, Biswas S, et al. Analytical Chemistry, 2019, 91(5): 3533.
[35] Wang Y, Xia C, Han Z, et al. Journal of Photochemistry and Photobiology B: Biology, 2019, 199: 111602.
[36] Liu D, Zhang T, Zhang M, et al. Bioorganic & Medicinal Chemistry Letters, 2020, 30(8): 127073.
[37] Kang T, Wang H, Wang X, et al. Microchemical Journal, 2019, 148: 442.
[38] Fu Z H, Qin J C, Wang Y W, et al. Dyes and Pigments, 2021, 185: 108896.
[39] Ravichandiran P, Boguszewska-Czubara A, Masłyk M, et al. Dyes and Pigments, 2020, 172: 107828.
[40] Chen C, Zhou L, Liu F, et al. Journal of Hazardous Materials, 2020, 386: 121943.
[41] Ravichandiran P, Kaliannagounder V K, Bella A P, et al. Analytical Chemistry, 2021, 93(2): 801.
[42] Adhikari S, Ta S, Ghosh A, et al. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 372: 49.
[43] Yan L, Zhang S, Xie Y, et al. Dyes and Pigments, 2020, 175: 108190.
[44] Guo H, Chen T, Liang Z, et al. Chemosphere, 2021, 263: 128270.
[45] Jaklová Dytrtová J, Bělononíková K, Jakl M, et al. Environ. Pollut., 2020, 266(1): 115201.
[46] Huang S, Wang W, Cheng J, et al. Microchemical Journal, 2020, 159: 105494.
[47] Xie Y F, Jiang Y J, Zou H Y, et al. Talanta, 2020, 220: 121430.
[48] Lin Z Y, Xue S F, Chen Z H, et al. Analytical Chemistry, 2018, 90(13): 8248.
[49] Nan X, Huyan Y, Li H, et al. Coordination Chemistry Reviews, 2021, 426: 213580.
[50] Rahimi H, Hosseinzadeh R, Tajbakhsh M. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 407: 113049.
[51] Yu C, Chen L, Zhang J, et al. Talanta, 2011, 85(3): 1627.
[52] Yu C, Zhang J, Li J, et al. Microchimica Acta, 2011, 174(3): 247.
[53] Yang X, Liu X, Li Y, et al. Biosensors and Bioelectronics, 2016, 80: 288.
[54] Wu S P, Chen Y P, Sung Y M. Analyst, 2011, 136(9): 1887.
[55] Wang R, Yu F, Liu P, et al. Chemical Communications, 2012, 48(43): 5310.
[56] Qin Z, Su W, Liu P, et al. ACS Omega, 2021, 6(38): 25040.
[57] Guo X, Huang J, Wei Y, et al. Journal of Hazardous Materials, 2020, 381: 120969.
[58] Han L, Liu S G, Dong X Z, et al. Journal of Hazardous Materials, 2019, 376: 170.
[59] Zhu Q, Liu L, Xing Y, et al. Journal of Hazardous Materials, 2018, 355: 50.
[60] Zhao L, Zhang Z, Liu Y, et al. Journal of Hazardous Materials, 2020, 385: 121556.
[61] Muthusamy S, Rajalakshmi K, Zhu D, et al. Sensors and Actuators B: Chemical, 2021, 346: 130534.
[62] Gauthama B, Narayana B, Sarojini B, et al. Microchemical Journal, 2021, 166: 106233.
[63] Zhou Z, Ding Y, Si S, et al. Journal of Hazardous Materials, 2021, 417: 125975.
[64] Mehta P K, Jeon J, Ryu K, et al. Journal of Hazardous Materials, 2022, 427: 128161.
[65] Chen Y, Bai Y, Han Z, et al. Chemical Society Reviews, 2015, 44(14): 4517.
[66] Barr Chelsea A, Burdette Shawn C. Essays in Biochemistry, 2017, 61(2): 225.
[67] Zhang C, Liu M, Liu S, et al. Inorganic Chemistry, 2018, 57(17): 10625.
[68] Donadio G, Di Martino R, Oliva R, et al. Journal of Material Chemistry B, 2016, 4(43):6979.
[69] Bi X Y, Wang Y Y, Wang D D, et al. RSC Advances, 2020, 10(45): 26874.
[70] Fujii T, Shindo Y, Hotta K, et al. Journal of the American Chemical Society, 2014, 136(6): 2374.
[71] Peng H, Cui B, Li G, et al. Materials Science and Engineering: C, 2015, 46: 253.
[72] Díaz Nieto C H, Palacios N A, Verbeeck K, et al. Water Research, 2019, 154: 117.
[73] Zhang Y, Hu Y, Wang L, et al. Minerals Engineering, 2019, 139: 105868.
[74] Zheng A, Liu H, Gao X, et al. Analytical Chemistry, 2021, 93(26): 9244.
[75] Sil A, Maity A, Giri D, et al. Sensors and Actuators B: Chemical, 2016, 226: 403.
[76] Zhang Y, Zhao Y, Shi L, et al. Analyst, 2020, 145(16): 5631.
[77] Wang Q, Chen Q, Li C, et al. Microchemical Journal, 2020, 153: 104503.
[78] Heo G, Manivannan R, Kim H, et al. Sensors and Actuators B: Chemical, 2019, 297: 126723.
[79] Zhang Y, Zhang L. Journal of Hazardous Materials, 2021, 418: 126271.
[80] Zeng Z, Ma R, Liu C, et al. Sensors and Actuators B: Chemical, 2017, 250: 267.
[81] Qi J, Yao Q, Qian K, et al. European Journal of Medicinal Chemistry, 2018, 154: 91.