光谱学与光谱分析 |
|
|
|
|
|
Study on Physical Deviation Factors on Laser Induced Breakdown Spectroscopy Measurement |
WAN Xiong1, 2, WANG Peng1, WANG Qi1, ZHANG Qing1, ZHANG Zhi-min1, ZHANG Hua-ming1 |
1. Nondestructive Testing Technology Key Laboratory of the Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China 2. Key Lab of Spatial Active Opto-Electronic Techniques, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China |
|
|
Abstract In order to eliminate the deviation between the measured LIBS spectral line and the standard LIBS spectral line, and improve the accuracy of elements measurement, a research of physical deviation factors in laser induced breakdown spectroscopy technology was proposed. Under the same experimental conditions, the relationship of ablated hole effect and spectral wavelength was tested, the Stark broadening data of Mg plasma laser induced breakdown spectroscopy with sampling time-delay from 1.00 to 3.00 μs was also studied, thus the physical deviation influences such as ablated hole effect and Stark broadening could be obtained while collecting the spectrum. The results and the method of the research and analysis can also be applied to other laser induced breakdown spectroscopy experiment system, which is of great significance to improve the accuracy of LIBS elements measuring and is also important to the research on the optimum sampling time-delay of LIBS.
|
Received: 1900-01-01
Accepted: 1900-01-01
|
|
Corresponding Authors:
WAN Xiong
E-mail: wanxiong@126.com
|
|
[1] Cremers D A, Radziemski L J. Handbook of Laser-Induced Breakdown Spectroscopy. England:John Wiley&Sons Ltd, 2006. [2] Miziolek A M, Palleschi. Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals Applications. Cambridge: Cambridge University Press, 2006. [3] YU Liang-ying, LU Ji-dong, ZHANG Juan(余亮英, 陆继东, 张 娟). Laser Technology(激光技术), 2004, 28(1): 103. [4] Tognoni E, Palleschi V, Corsi M. Spectrochimica Acta Part B, 2002, 57(7): 1115. [5] Rusak D A, Castle B C, Smith B W. Trends in Analytical Chemistry,1998, 17(8, 9): 453. [6] Pasquini C, Cortez J, Silva L M C. Laser Induced Breakdown Spectroscopy, 2007, 18(3): 463. [7] Radziemski L J. Spectrochimica Acta Part B, 2002, 57(7): 1109. [8] Noll R, Sturm V, Aydinetal. Spectrochimica Acta Part B, 2008, (10): 1159. [9] Huang J S, Ke C B, Lin K C. Spectrochimica Acta Part B, 2004, 59(3): 321. [10] Lazic V, Barbini R, Colao F. Spectrochimica Acta Part B, 2001, 56(6): 807. [11] XIA Hui-rong, WANG Zu-geng(夏慧荣,王祖赓). Introduction of Molecular Spectroscopy and Laser Spectroscopy(分子光谱学与激光光谱学导论). Shanghai: East China Normal University Press(上海:华东师范大学出版社),2008. 116.
|
[1] |
ZHANG Xing-long1, LIU Yu-zhu1, 2*, SUN Zhong-mou1, ZHANG Qi-hang1, CHEN Yu1, MAYALIYA·Abulimiti3*. Online Monitoring of Pesticides Based on Laser Induced Breakdown
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1711-1715. |
[2] |
YANG Lin-yu1, 2, 3, DING Yu1, 2, 3*, ZHAN Ye4, ZHU Shao-nong1, 2, 3, CHEN Yu-juan1, 2, 3, DENG Fan1, 2, 3, ZHAO Xing-qiang1, 2, 3. Quantitative Analysis of Mn and Ni Elements in Steel Based on LIBS and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1804-1808. |
[3] |
HE Ya-xiong1, 2, ZHOU Wen-qi1, 2, ZHUANG Bin1, 2, ZHANG Yong-sheng1, 2, KE Chuan3, XU Tao1, 2*, ZHAO Yong1, 2, 3. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1049-1057. |
[4] |
LI Ming-liang1, DAI Yu-jia1, QIN Shuang1, SONG Chao2*, GAO Xun1*, LIN Jing-quan1. Influence of LIBS Analysis Model on Quantitative Analysis Precision of Aluminum Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 587-591. |
[5] |
GONG Zheng1, LIN Jing-jun2*, LIN Xiao-mei3*, HUANG Yu-tao1. Effect of Heating and Cooling on the Characteristic Lines of Al During Melting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 598-602. |
[6] |
QIN Shuang1, LI Ming-liang1, DAI Yu-jia1, GAO Xun1*, SONG Chao2*, LIN Jing-quan1. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 582-586. |
[7] |
WANG Ya-wen1,2,3, ZHANG Yong4, CHEN Xiong-fei1,2,3, LIU Ying1,2,3, ZHAO Zhen-yang4, YE Ming-guo5, XU Yu-xing6, LIU Peng-yu1,2,3*. Quantitative Analysis of Nickel-Based Superalloys Based on a Remote LIBS System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 603-608. |
[8] |
XU Yu-ting1, SUN Hao-ran2, GAO Xun1*, GUO Kai-min3*, LIN Jing-quan1. Identification of Pork Parts Based on LIBS Technology Combined With PCA-SVM Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3572-3576. |
[9] |
DENG Fan1, HU Zhen-lin2, CUI Hao-hao2, ZHANG Deng2, TANG Yun4, ZHAO Zhi-fang2, ZENG Qing-dong2, 3*, GUO Lian-bo2*. Progress in the Correction of Self-Absorption Effect on Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 2989-2998. |
[10] |
YOU Wen1, XIA Yang-peng1, HUANG Yu-tao1, LIN Jing-jun2*, LIN Xiao-mei3*. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3240-3244. |
[11] |
YANG Wen-feng1*, QIAN Zi-ran1, CAO Yu2, WEI Gui-ming1, ZHU De-hua2, WANG Feng3, FU Chan-yuan1. Research on the Controllability of Aircraft Skin Laser Paint Remove Based on Laser-Induced Breakdown Spectrum and Composition Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3233-3239. |
[12] |
HE Ya-xiong1, ZHOU Wen-qi1, KE Chuan2, XU Tao1*, ZHAO Yong1, 2. Review of Laser-Induced Breakdown Spectroscopy in Gas Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2681-2687. |
[13] |
CHEN Geng-yin1, ZHANG Qi-hang1, LIU Yu-zhu1, 2*, ZHANGCHENG Yuan-zhe1, CHEN Yu1, CHEN Guo-qing1, HAN Bo-yuan1, ABULIMITI Bumaliya3*. Online Detection of VOCs Based on LIBS and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2729-2733. |
[14] |
LIAO Wen-long1, LIU Kun-ping2, HU Jian-ping1, GAN Ya1, LIN Qing-yu3, DUAN Yi-xiang3*. Research Advances and Trends of Rapid Detection Technologies for Pathogenic Bacteria Based on Fingerprint Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2372-2377. |
[15] |
LI Wen-xin1, CHEN Guang-hui1, 3, ZENG Qing-dong1, 2*, YUAN Meng-tian1, 3, HE Wu-guang1, JIANG Ze-fang1, LIU Yang1, NIE Chang-jiang1, YU Hua-qing1, GUO Lian-bo2. Rapid Classification of Steel by a Mobile Laser-Induced Breakdown Spectroscopy Based on Optical Fiber Delivering Laser Energy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2638-2643. |
|
|
|
|