|
|
|
|
|
|
Review of Laser-Induced Breakdown Spectroscopy in Gas Detection |
HE Ya-xiong1, ZHOU Wen-qi1, KE Chuan2, XU Tao1*, ZHAO Yong1, 2 |
1. School of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
2. Center for Superconducting and New Energy Research and Development, Southwest Jiaotong University, Chengdu 610031, China |
|
|
Abstract With the development of industrial technology, the requirements of online detection instruments and detection technology in gas detection are becoming higher and higher. Due to the complex changes in gas composition during gas flow, common detection methods such as Fourier Transform Infrared Spectroscopy (FTIR), Cavity ring-down spectroscopy (CRDS), and Electrochemical sensors often cannot meet the detection requirements or only Local area detection. Laser-induced breakdown spectroscopy (LIBS), as an emerging atomic emission spectroscopy analysis technology, has received extensive attention and research from researchers in the field of spectral analysis. LIBS has been applied to detect solids, liquids and gases because of its advantages of simultaneous detection of multi-elements, non-invasive, real-time on-line and no special preparation of samples. LIBS technology can accurately detect in the fields of harsh environments and high interference gas manufacturing and detection. The present paper introduces the basic principle of LIBS technology and two parameters describing the physical properties of plasma. For the application of LIBS technology in the field of gas detection, This paper introduces the recent development of LIBS technology in the field of gas detection at home and abroad from the following six aspects:Fuel equivalent ratio, the gas composition of fuel mixture combustion products, nitrogen and a rare gas, greenhouse gas and new energy gas detection, as well as related LIBS experimental equipment and experimental methods improvement and optimization. Finally, the prospect of laser-induced breakdown spectroscopy in the field of gas detection has prospected.
|
Received: 2020-01-13
Accepted: 2020-05-02
|
|
Corresponding Authors:
XU Tao
E-mail: xutao_ct@aliyun.com
|
|
[1] Protopopov V. Practical Opto-Electronics. Berlin: Springer, 2014.
[2] DUAN Yi-xiang, LIN Qing-yu(段忆翔,林庆宇). Laser Induced Breakdown Spectroscopy and Its Application(激光诱导击穿光谱分析技术及其应用). Beijing:Science Press(北京:科学出版社),2014. 8.
[3] Artru M-C, Brillet WÜL. JOSA, 1974, 64(8): 1063.
[4] Aguilera J A, Aragon C. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(12): 1861.
[5] Konjevic′ N, Lesage A, Fuhr J R, et al. Journal of Physical and Chemical Reference Data, 2002, 31(3): 819.
[6] Le Drogoff B, Margot J, Chaker M, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 987.
[7] Miziolek A W, PalleschiI Schechter V. Laser Induced Breakdown Spectroscopy,Cambridge University Press,2006.
[8] Griem H R. Principles of Plasma Spectroscopy. New York: Cambridge University Press, 1997.
[9] YANG Wen-bin, LI Bin-cheng, HAN Yan-ling, et al(杨文斌,李斌成,韩艳玲,等). Chinese Journal of Lasers(中国激光), 2017, 44(10): 281.
[10] Eseller K E, Yueh F Y,Singh J P. Applied Physics B, 2011, 102(4): 963.
[11] Hsu P S, Patnaik A K, Stolt A, et al. Applied Physics Letters, 2018, 113(21): 214103.
[12] Zhang Z, Li T,Huang S. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 155: 24.
[13] Mansour M S, Imam H, Elsayed K A, et al, Spectrochimica Acta Part B: Atomic Spectroscopy, 2009,64(10): 1079.
[14] Zhang S,Yu X, Li F, et al. Optics and Lasers in Engineering, 2012, 50(6): 877.
[15] Kammermann T, Merotto L, Bleiner D, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 155: 79.
[16] Hsu P S, Gragston M, Wu Y, et al. Applied Optics, 2016, 55(28): 8042.
[17] Ferioli F, Buckley S G. Combustion and Flame, 2006, 144(3): 435.
[18] Zimmer L, Yoshida S. Experiments in Fluids, 2012, 52(4): 891.
[19] McGann B, Carter C D, Ombrello T, et al. Combustion and Flame, 2015, 162(12): 4479.
[20] Michalakou A, Stavropoulos P,Couris S. Applied Physics Letters, 2008, 92(8): 081501.
[21] SHI Yan-ni, LOU Chun, FU Jun-tao, et al(史艳妮, 娄 春, 傅峻涛, 等). Research and Exploration in Laboratory(实验室研究与探索), 2019, 38(2): 54.
[22] Sturm V, R Noll, Applied Optics, 2003, 42(30): 6221.
[23] Kotzagianni M, Couris S. Chemical Physics Letters, 2013, 561: 36.
[24] Lancaster E D, McNesby K L, Daniel R G, et al. Applied Optics, 1999, 38(9): 1476.
[25] Jiping L, Keqiang C, Xiaobo Z, et al. Energy Procedia, 2015, 75: 2409.
[26] Yao S, Xu J, Zhao J, et al. Energy & Fuels, 2017, 31(5): 4681.
[27] Do H, Carter C D. Combustion and Flame, 2013, 160(3): 601.
[28] Do H, Carter C D, Liu Q, et al. Proceedings of the Combustion Institute, 2015, 35(2): 2155.
[29] Tian Z H, Dong M R, Li S, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2017, 136: 8.
[30] Xu N, Majidi V. Applied Spectroscopy, 1993, 47(8): 1134.
[31] McNaghten E, Parkes A, Griffiths B, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(10): 1111.
[32] YANG Wen-bin, ZHOU Jiang-ning, LI Bin-cheng, et al(杨文斌, 周江宁, 李斌成, 等). Acta Physica Sinica(物理学报), 2017, 66(9): 95201.
[33] Cremers D A, Radziemski L J. Analytical Chemistry, 1983, 55(8): 1252.
[34] Dikshit V, Yueh F Y, Singh J P, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 68: 65.
[35] Kurniawan K H, Lie T J, Suliyanti M M, et al. Journal of Applied Physics, 2009, 105(10): 103303.
[36] Ball A, Hohreiter V,Hahn D. Applied Spectroscopy, 2005, 59(3): 348.
[37] Nozari H, Rezaei F,Tavassoli S H. Physics of Plasmas, 2015,22(9): 093302.
[38] Patnaik A K, Y Wu, P S Hsu, et al. Optics Express, 2018, 26(20): 25750.
[39] Wu Y, Gragston M, Zhang Z, et al. Combustion and Flame, 2018, 198: 120.
[40] Abdulmadjid S N, Lie Z S, Niki H, et al. Applied Spectroscopy, 2010, 64(4): 365.
[41] Scott J R, Effenberger A J,Hatch J J. Influence of Atmospheric Pressure and Composition on LIBS, in Laser-Induced Breakdown Spectroscopy. Berlin: Springer, 2014. 91.
[42] Glumac N, Elliott G. Optics and Lasers in Engineering, 2007, 45(1): 27.
[43] Glumac N G, Elliott G S,Boguszko M. AIAA Journal, 2005, 43(9): 1984.
[44] Mao X, Zeng X, Wen S B, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(7-8): 960.
[45] Wermer L, Lefkowitz J K, Ombrello T, et al. Proceedings of the Combustion Institute, 2019, 37(4): 5605.
[46] Wermer L, Lefkowitz J K, Ombrello T, et al. Plasma Sources Science and Technology, 2018, 27(1): 015012.
[47] Hohreiter V, Ball A,Hahn D. Journal of Analytical Atomic Spectrometry, 2004, 19(10): 1289.
[48] Radziemski L J, Cremers D A. Spectrochemical Analysis Using Laser Plasma Excitation. Marcel Dekker, New York, 1989.
[49] Chen Y L, Lewis J,Parigger C. Journal of Quantitative Spectroscopy and Radiative Transfer, 2000, 67(2): 91.
[50] Leela C, Bagchi S, Kumar V R, et al. Laser and Particle Beams, 2013, 31(2): 263.
[51] Wang Z, Yuan T, Hou Z, et al. Frontiers of Physics, 2014, 9(4): 419.
[52] Yin H, Hou Z, Yuan T, et al. Journal of Analytical Atomic Spectrometry, 2015, 30(4): 922.
[53] Hsu P S, Patnaik A K, Stolt A J, et al. Applied Physics Letters, 2018, 113(21): 214103.
[54] Wang Z Z, Deguchi Y, Kuwahara M, et al. Applied Spectroscopy, 2013, 67(11): 1242. |
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
ZHU Zhao-zhou1*, YANG Xin-xin1, LI Jun1, HE Hui-jun2, ZHANG Zi-jing1, YAN Wen-rui1. Determination of Rare Earth Elements in High-Salt Water by ICP-MS
After Pre-Concentration Using a Chelating Resin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1862-1866. |
[3] |
YANG Jin-chuan1, 2, AN Jing-long1, 2, LI Cong3, ZHU Wen-chao3*, HUANG Bang-dou4*, ZHANG Cheng4, 5, SHAO Tao4, 5. Study on Detecting Method of Toxic Agent Containing Phosphorus
(Simulation Agent) by Optical Emission Spectroscopy of
Atmospheric Pressure Low-Temperature Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1728-1734. |
[4] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[5] |
ZHANG Xing-long1, LIU Yu-zhu1, 2*, SUN Zhong-mou1, ZHANG Qi-hang1, CHEN Yu1, MAYALIYA·Abulimiti3*. Online Monitoring of Pesticides Based on Laser Induced Breakdown
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1711-1715. |
[6] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[7] |
YANG Lin-yu1, 2, 3, DING Yu1, 2, 3*, ZHAN Ye4, ZHU Shao-nong1, 2, 3, CHEN Yu-juan1, 2, 3, DENG Fan1, 2, 3, ZHAO Xing-qiang1, 2, 3. Quantitative Analysis of Mn and Ni Elements in Steel Based on LIBS and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1804-1808. |
[8] |
WANG Bin1, 2, ZHENG Shao-feng2, LI Wei-cai2, ZHONG Kang-hua2, GAN Jiu-lin1, YANG Zhong-min1, SONG Wu-yuan3*. Determination of Rare Earth Elements in Imported Copper Concentrate by Inductively Coupled Plasma Mass Spectrometry With High Matrix
Injection System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1822-1826. |
[9] |
WANG Ling-ling1, 2, 3, WANG Bo1, 2, 3, XIONG Feng1, 2, 3, YANG Lu-cun1, 2, LI Jing-jing4, XIAO Yuan-ming1, 2, 3, ZHOU Guo-ying1, 2*. A Comparative Study of Inorganic Elements in Cultivativing Astragalus Membranaceus From Different Habitats[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1407-1412. |
[10] |
HE Ya-xiong1, 2, ZHOU Wen-qi1, 2, ZHUANG Bin1, 2, ZHANG Yong-sheng1, 2, KE Chuan3, XU Tao1, 2*, ZHAO Yong1, 2, 3. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1049-1057. |
[11] |
LI Ai-yang1, FU Liang2*, CHEN Lin3. Determination of Trace Heavy Metal Elements in Plant Essential Oils by Inductively Coupled Plasma Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1162-1167. |
[12] |
DENG Ya-li1, LI Mei2, WANG Ming2*, HAO Hui1*, XIA Wei1. Surface Plasmon Resonance Gas Sensor Based on Silver/Titanium Dioxide Composite Film[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 743-748. |
[13] |
ZHOU Jun1, 2, YANG Yang2, YAO Yao2, LI Zi-wen3, WANG Jian3, HOU Chang-jun1*. Application of Mid-Infrared Spectroscopy in the Analysis of Key Indexes of Strong Flavour Chinese Spirits Base Liquor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 764-768. |
[14] |
GUO Jin-chang1, 2, SHI Yu1*, GU Yu-fen1, ZHANG Gang1. Study of Spectral Emissions Characterization and Plasma During Fiber Laser Gas Nitriding of Titanium Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 961-969. |
[15] |
LI Yuan1, 2, SHI Yao2*, LI Shao-yuan1*, HE Ming-xing3, ZHANG Chen-mu2, LI Qiang2, LI Hui-quan2, 4. Accurate Quantitative Analysis of Valuable Components in Zinc Leaching Residue Based on XRF and RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 490-497. |
|
|
|
|