|
|
|
|
|
|
Determination of Calcium, Magnesium, Aluminium and Silicon Content in Iron Ore Using Laser-Induced Breakdown Spectroscopy Assisted by Variable Importance-Back Propagation Artificial Neural Networks |
LIU Shu1, JIN Yue1, 2, SU Piao1, 2, MIN Hong1, AN Ya-rui2, WU Xiao-hong1* |
1. Technical Center for Industrial Product and Raw Material Inspection and Testing of Shanghai Customs District, Shanghai 200135, China
2. College of Materials & Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
|
|
|
Abstract The rapid and accurate determination of calcium, magnesium, aluminium and silicon content in iron ore plays an important role in iron ore quality assessment. The accurate determination of calcium (CaO), magnesium (MgO), aluminium (Al2O3) and silicon (SiO2) in iron ore using laser-induced breakdown spectroscopy (LIBS) remains a challenge due to the overfitting of multivariate analysis methods and matrix effects between different types of samples. In this paper, variable importance-back propagation artificial neural network (VI-BP-ANN) assisted LIBS was used for the first time to quantify the content of SiO2, Al2O3, CaO and MgO in iron ore. In this study, LIBS spectra of 12 representative samples of 244 batches of iron ore were collected, spectral pre-processing methods were optimised, the importance of LIBS spectral features was measured using random forest (RF), RF model parameters were optimised using out-of-bag (OOB) errors, and variable importance thresholds were used to optimise the input variables for the BP-ANN calibration model. The variable importance thresholds and the number of neurons were optimised by five-fold cross-validation (5-CV) of the coefficient of determination (R2) and root mean square error (RMSE). The results showed root mean square error of prediction (RMSEP) for the SiO2, Al2O3, CaO, MgO content of the test samples were 0.372 3 wt%, 0.129 8 wt%, 0.052 4 wt% and 0.149 0 wt% respectively, with R2 of 0.977 1, 0.950 4, 0.987 8 and 0.997 7, respectively. Compared to using the same preprocessing method as input to the three PLS, SVM and RF models, the VI-BP- ANN model showed excellent performance in both the calibration dataset and prediction dataset. The results indicate that the combination of LIBS and VI-BP-ANN has the potential to achieve fast and accurate prediction of calcium, magnesium, aluminium and silicon content of iron ore in practical application.
|
Received: 2022-06-25
Accepted: 2023-04-23
|
|
Corresponding Authors:
WU Xiao-hong
E-mail: wuxiaohong_2196@163.com
|
|
[1] Wang P, Li N, Yan C, et al. Analytical Methods, 2019, 11(27): 3419.
[2] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会). GB/T 6730.13—2007 Iron Ores-Determination of Calcium and Magnesium Content-EGTA-CyDTA Titrimetric Method(GB/T 6730.13—2007 铁矿石 钙和镁含量的测定 EGTA-CyDTA滴定法), 2007.
[3] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会). GB/T 6730.11—2007 Iron Ores-Determination of Aluminium Content-EDTA Titrimetric Method (GB/T 6730.11—2007 铁矿石 铝含量的测定 EDTA滴定法), 2007.
[4] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会). GB/T 6730.9—2016 Iron Ores—Determination of Silicon Content—The Silicomolybdic Blue Spectrophotometric Method Reduced by Ammonium Ferrous Sulfate (GB/T 6730.9—2016 铁矿石 硅含量的测定 硫酸亚铁铵还原-硅钼蓝分光光度法), 2016.
[5] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会). GB/T 6730.14—2017 Iron Ores—Determination of Calcium Content—Flame atomic Absorption Spectrometric Method (GB/T 6730.14—2017 铁矿石 钙含量的测定 火焰原子吸收光谱法), 2017.
[6] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会). GB/T 6730.74—2017 Iron Ores—Determination of Magnesium Content—Flame Atomic Absorption Spectrometric Method (GB/T 6730.74—2017 铁矿石 镁含量的测定 火焰原子吸收光谱法), 2017.
[7] State Administration for Market Regulation and Standardization Administration of China(国家市场监督管理总局,中国国家标准化管理委员会). GB/T 6730.56—2019 Iron Ores—Determination of Aluminum Content—Flame Atomic Absorption Spectrometric Method (GB/T 6730.56—2019 铁矿石 铝含量的测定 火焰原子吸收光谱法), 2019.
[8] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会). GB/T 6730.63—2006 Iron Ores—Determination of Aluminum, Calcium, Magnesium, Manganese, Phosphorus, Silicon and Titanium Content—Inductively Coupled Plasma Atomic Emission Spectrometric Method (GB/T 6730.63—2006 铁矿石 铝、钙、镁、锰、磷、硅和钛含量的测定 电感耦合等离子体发射光谱法), 2006.
[9] General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会). GB/T 6730.62—2005 Iron Ores—Determination of Calcium, Silicon, Manganese, Titanium, Phosphorus Magnesium, Aluminium and Barium Content Wavelength Dispersive X-ray Fluorescence Spectrometric Method (GB/T 6730.62—2005 铁矿石 钙、硅、镁、钛、磷、锰、铝和钡含量的测定 波长色散X射线荧光光谱法), 2005.
[10] Chen T, Zhang T, Li H. TrAC Trends in Analytical Chemistry, 2020, 133: 116113.
[11] YANG Ya-wen, YAN Cheng-lin, XU Ding, et al(杨雅雯, 严承琳, 徐 鼎, 等). Metallurgical Analysis(冶金分析), 2020, 40(12): 14.
[12] Wang Z, Afgan M S, Gu W, et al. TrAC Trends in Analytical Chemistry, 2021, 143: 116385.
[13] Grant K J, Paul G L, O'Neill J A. Applied Spectroscopy, 1991, 45(4): 701.
[14] Death D L, Cunningham A P, Pollard L J. Spectrochimica Acta Part B: Atomic Spectroscopy, 2008, 63(7): 763.
[15] Hao Z Q, Li C M, Shen M, et al. Optics Express, 2015, 23(6): 7795.
[16] Guo Y M, Guo L B, Hao Z Q, et al. Journal of Analytical Atomic Spectrometry, 2018, 33(8): 1330.
[17] ZHAO Wen-ya, MIN Hong, LIU Shu, et al(赵文雅, 闵 红, 刘 曙, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(7): 1998.
[18] Wang J, Shi M, Zheng P, et al. Journal of Applied Spectroscopy, 2018, 85(1): 190.
[19] Sun C, Tian Y, Gao L, et al. Scientific Reports, 2019, 9: 11363.
[20] Yang Y, Li C, Liu S, et al. Analytical Methods, 2020, 12(10): 1316.
[21] Liu K, Tian D, Xu H, et al. Analytical Methods, 2019, 11(37): 4769.
[22] Tang H, Zhang T, Yang X, et al. Analytical Methods, 2015, 7(21): 9171.
[23] Liu K, Tian D, Wang H, et al. Analytical Methods, 2019, 11(9): 1174.
|
[1] |
LIU Jia1, 2, GUO Fei-fei2, YU Lei2, CUI Fei-peng2, ZHAO Ying2, HAN Bing2, SHEN Xue-jing1, 2, WANG Hai-zhou1, 2*. Quantitative Characterization of Components in Neodymium Iron Boron Permanent Magnets by Laser Induced Breakdown Spectroscopy (LIBS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 141-147. |
[2] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[3] |
YANG Wen-feng1, LIN De-hui1, CAO Yu2, QIAN Zi-ran1, LI Shao-long1, ZHU De-hua2, LI Guo1, ZHANG Sai1. Study on LIBS Online Monitoring of Aircraft Skin Laser Layered Paint Removal Based on PCA-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3891-3898. |
[4] |
LIN Hong-jian1, ZHAI Juan1*, LAI Wan-chang1, ZENG Chen-hao1, 2, ZHAO Zi-qi1, SHI Jie1, ZHOU Jin-ge1. Determination of Mn, Co, Ni in Ternary Cathode Materials With
Homologous Correction EDXRF Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3436-3444. |
[5] |
HUANG Li, MA Rui-jun*, CHEN Yu*, CAI Xiang, YAN Zhen-feng, TANG Hao, LI Yan-fen. Experimental Study on Rapid Detection of Various Organophosphorus Pesticides in Water by UV-Vis Spectroscopy and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3452-3460. |
[6] |
LI Zhong-bing1, 2, JIANG Chuan-dong2, LIANG Hai-bo3, DUAN Hong-ming2, PANG Wei2. Rough and Fine Selection Strategy Binary Gray Wolf Optimization
Algorithm for Infrared Spectral Feature Selection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3067-3074. |
[7] |
SUN Cheng-yu1, JIAO Long1*, YAN Na-ying1, YAN Chun-hua1, QU Le2, ZHANG Sheng-rui3, MA Ling1. Identification of Salvia Miltiorrhiza From Different Origins by Laser
Induced Breakdown Spectroscopy Combined with Artificial Neural
Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3098-3104. |
[8] |
KONG De-ming1, LIU Ya-ru1, DU Ya-xin2, CUI Yao-yao2. Oil Film Thickness Detection Based on IRF-IVSO Wavelength Optimization Combined With LIF Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2811-2817. |
[9] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[10] |
LI Chang-ming1, CHEN An-min2*, GAO Xun3*, JIN Ming-xing2. Spatially Resolved Laser-Induced Plasma Spectroscopy Under Different Sample Temperatures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2032-2036. |
[11] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[12] |
WANG Bin1, 2, ZHENG Shao-feng2, GAN Jiu-lin1, LIU Shu3, LI Wei-cai2, YANG Zhong-min1, SONG Wu-yuan4*. Plastic Reference Material (PRM) Combined With Partial Least Square (PLS) in Laser-Induced Breakdown Spectroscopy (LIBS) in the Field of Quantitative Elemental Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2124-2131. |
[13] |
CHENG Xiao-xiang1, WU Na2, LIU Wei2*, WANG Ke-qing2, LI Chen-yuan1, CHEN Kun-long1, LI Yan-xiang1*. Research on Quantitative Model of Corrosion Products of Iron Artefacts Based on Raman Spectroscopic Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2166-2173. |
[14] |
HU Meng-ying1, 2, ZHANG Peng-peng1, 2, LIU Bin1, 2, DU Xue-miao1, 2, ZHANG Ling-huo1, 2, XU Jin-li1, 2*, BAI Jin-feng1, 2. Determination of Si, Al, Fe, K in Soil by High Pressure Pelletised Sample and Laser-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2174-2180. |
[15] |
WU Shu-jia1, 2, YAO Ming-yin2, 3, ZENG Jian-hui2, HE Liang2, FU Gang-rong2, ZENG Yu-qi2, XUE Long2, 3, LIU Mu-hua2, 3, LI Jing2, 3*. Laser-Induced Breakdown Spectroscopy Detection of Cu Element in Pig Fodder by Combining Cavity-Confinement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1770-1775. |
|
|
|
|