|
|
|
|
|
|
Progress in the Correction of Self-Absorption Effect on Laser-Induced Breakdown Spectroscopy |
DENG Fan1, HU Zhen-lin2, CUI Hao-hao2, ZHANG Deng2, TANG Yun4, ZHAO Zhi-fang2, ZENG Qing-dong2, 3*, GUO Lian-bo2* |
1. School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
2. Wuhan National Laboratory for Optoelectronics, Laser and Terahertz Division, Huazhong University of Science and Technology, Wuhan 430074, China
3. School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China
4. School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China |
|
|
Abstract Laser-induced breakdown spectroscopy (LIBS), as a new material composition detection technology, has lots of advantages such as rapid, real-time, micro-damage, in-situ, multi-element analysis and so on. At present, it has been widely used in environmental monitoring, food safety, mineral processing and metallurgy, biomedicine, space exploration and other fields. However, due to the self-absorption, the spectral intensity is reduced. In severe cases, the line profile is even sunken in the centrum (“self-reversal”). The linear coefficient of calibration curve decreases, resulting in the deterioration of the accuracy of element detection, so that large-scale commercial applications cannot be realized. Therefore, the exploration of the self-absorption effect and its correction methods has always been the research hotspot. In this review, the progress of the correction method and the physical mechanism of self-absorption are reviewed. The main correction methods are summarized from the perspectives of experiment parameters optimization, physical assist device, self-absorption model and correction algorithm, respectively. The advantages and disadvantages of the primary correction methods are compared and analyzed. The experiment parameters optimization has the advantages of simple principle and operation. The effect of self-absorption reduction of laser stimulated absorption LIBS(LSA-LIBS) is stable. Microwave assisted excitation LIBS (MAE-LIBS) can reduce the self-absorption effect of multiple elements simultaneously and cost low. The self-absorption coefficient method can directly quantify the degree of self-absorption effect, has simple calculation steps and requires less plasma parameters. The self-absorption correction algorithm based on internal reference line has high calculation efficiency and obvious correction effect. Optically thin method can directly obtain optically thin spectral lines to avoid theoretical errors. Finally, the future research direction and development trend of self-absorption is prospected in our opinion.
|
Received: 2020-09-04
Accepted: 2021-01-12
|
|
Corresponding Authors:
ZENG Qing-dong, GUO Lian-bo
E-mail: jerry-z@hbeu.edu.cn;lbguo@hust.edu.cn
|
|
[1] Hahn D W, Omenetto N. Applied Spectroscopy, 2012, 66(4): 347.
[2] Harmon R S, Russo R E, Hark R R. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 87: 11.
[3] Multari R A, Cremers D A, Dupre J A M, et al. Journal of Agricultural and Food Chemistry, 2013, 61(36): 8687.
[4] JIA Yun-hai, LIU Jia(贾云海, 刘 佳). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(8): 2611.
[5] Singh V K, Rai A K. Lasers in Medical Science, 2011, 26(5): 673.
[6] Sallé B, Lacour J-L, Vors E, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2004, 59(9): 1413.
[7] Bulajic D, Corsi M, Cristoforetti G, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002, 57(2): 339.
[8] Tang Y, Li J, Hao Z, et al. Optics Express, 2018, 26(9): 12121.
[9] Cowan R D, Dieke G H. Reviews of Modern Physics, 1948, 20(2): 418.
[10] Li J M, Guo L B, Li C M, et al. Optics Letters, 2015, 40(22): 5224.
[11] TANG Yun(唐 云). Doctoral Dissertation(博士论文). Study on the Method of Self-Absorption Effect Inhibition in Laser-Induced Breakdown Spectroscopy(激光探针自吸收效应抑制方法研究). Huazhong Unviersity of Science & Technology(华中科技大学), 2019.
[12] Zeng Q, Guo L, Li X, et al. Journal of Analytical Atomic Spectrometry, 2015, 30(2): 403.
[13] Qiu Y, Wu J, Zhang Z, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2019, 155: 12.
[14] Hai R, He Z, Yu X, et al. Optics Express, 2019, 27(3): 2509.
[15] Cui H, Tang Y, Ma S, et al. Optik, 2020, 204: 164144.
[16] El Sherbini A, El Sherbini T M, Hegazy H, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2005, 60(12): 1573.
[17] Yi R, Guo L, Li C, et al. Journal of Analytical Atomic Spectrometry, 2016, 31(4): 961.
[18] Hao Z, Liu L, Shen M, et al. Optics Express, 2016, 24(23): 26521.
[19] Rezaei F, Karimi P, Tavassoli S. Applied Optics, 2013, 52(21): 5088.
[20] Li J, Tang Y, Hao Z, et al. Journal of Analytical Atomic Spectrometry, 2017, 32(11): 2189.
[21] Xiong Z, Hao Z, Li X, et al. Journal of Analytical Atomic Spectrometry, 2019, 34(8): 1606.
[22] Karnadi I, Pardede M, Tanra I, et al. Scientific Reports, 2020, 10(1): 13278.
[23] Gornushkin I, Anzano J, King L, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 1999, 54(3-4): 491.
[24] Aragon C, Bengoechea J, Aguilera J. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 619.
[25] Aguilera J, Bengoechea J, Aragón C. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(2): 221.
[26] El Sherbini A, Hegazy H, El Sherbini T M. Spectrochimica Acta Part B: Atomic Spectroscopy, 2006, 61(5): 532.
[27] Hannachi R, Teulet P, Taieb G, et al. High Temperature Material Processes: An International Quarterly of High-Technology Plasma Processes, 2009, 13(1): 45.
[28] Bredice F O, Rocco H O D, Sobral H M, et al. Applied Spectroscopy, 2010, 64(3): 320.
[29] In J H, Kim C K, Lee S H, et al. Journal of Analytical Atomic Spectrometry, 2013, 28(8): 1327.
[30] Rezaei F, Karimi P, Tavassoli S. Applied Physics B, 2014, 114(4): 591.
[31] Shirvani-Mahdavi H, Shoursheini S Z, Gholami H, et al. Applied Physics B, 2014, 117(3): 823.
[32] Sun L, Yu H. Talanta, 2009, 79(2): 388.
[33] Li T, Hou Z, Fu Y, et al. Analytica Chimica Acta, 2019, 1058: 39.
[34] Lazic V, Barbini R, Colao F, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 807.
[35] Hou J, Zhang L, Yin W, et al. Optics Express, 2017, 25(19): 23024.
[36] Hou J, Zhang L, Zhao Y, et al. Optics Express, 2019, 27(3): 3409.
[37] Moon H-Y, Herrera K K, Omenetto N, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(7): 702.
[38] Burger M, Skočic M, Bukvic S. Spectrochimica Acta Part B: Atomic Spectroscopy, 2014, 10151.
[39] Cristoforetti G, Tognoni E. Spectrochimica Acta Part B: Atomic Spectroscopy, 2013, 7963.
[40] Aragón C, Aguilera J. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 149: 90.
[41] Safi A, Tavassoli S H, Cristoforetti G, et al. Analytical Chemistry, 2019, 91(13): 8595.
[42] Touchet K, Chartier F, Hermann J, et al. Spectrochimica Acta Part B: Atomic Spectroscopy, 2020, 168: 105868. |
[1] |
ZHANG Xing-long1, LIU Yu-zhu1, 2*, SUN Zhong-mou1, ZHANG Qi-hang1, CHEN Yu1, MAYALIYA·Abulimiti3*. Online Monitoring of Pesticides Based on Laser Induced Breakdown
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1711-1715. |
[2] |
YANG Lin-yu1, 2, 3, DING Yu1, 2, 3*, ZHAN Ye4, ZHU Shao-nong1, 2, 3, CHEN Yu-juan1, 2, 3, DENG Fan1, 2, 3, ZHAO Xing-qiang1, 2, 3. Quantitative Analysis of Mn and Ni Elements in Steel Based on LIBS and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1804-1808. |
[3] |
HE Ya-xiong1, 2, ZHOU Wen-qi1, 2, ZHUANG Bin1, 2, ZHANG Yong-sheng1, 2, KE Chuan3, XU Tao1, 2*, ZHAO Yong1, 2, 3. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1049-1057. |
[4] |
LI Ming-liang1, DAI Yu-jia1, QIN Shuang1, SONG Chao2*, GAO Xun1*, LIN Jing-quan1. Influence of LIBS Analysis Model on Quantitative Analysis Precision of Aluminum Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 587-591. |
[5] |
GONG Zheng1, LIN Jing-jun2*, LIN Xiao-mei3*, HUANG Yu-tao1. Effect of Heating and Cooling on the Characteristic Lines of Al During Melting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 598-602. |
[6] |
QIN Shuang1, LI Ming-liang1, DAI Yu-jia1, GAO Xun1*, SONG Chao2*, LIN Jing-quan1. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 582-586. |
[7] |
WANG Ya-wen1,2,3, ZHANG Yong4, CHEN Xiong-fei1,2,3, LIU Ying1,2,3, ZHAO Zhen-yang4, YE Ming-guo5, XU Yu-xing6, LIU Peng-yu1,2,3*. Quantitative Analysis of Nickel-Based Superalloys Based on a Remote LIBS System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 603-608. |
[8] |
TIAN Yan-long1, 2, 3, WANG Yi3, WANG Xiao3, GAO Xue-jun3, ZHOU Jia-cai3, LU Dao-li1*, CHEN Bin1*. Advances in Detection of Microorganisms Using Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 9-14. |
[9] |
XU Yu-ting1, SUN Hao-ran2, GAO Xun1*, GUO Kai-min3*, LIN Jing-quan1. Identification of Pork Parts Based on LIBS Technology Combined With PCA-SVM Machine Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3572-3576. |
[10] |
YOU Wen1, XIA Yang-peng1, HUANG Yu-tao1, LIN Jing-jun2*, LIN Xiao-mei3*. Research on Selection Method of LIBS Feature Variables Based on CART Regression Tree[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3240-3244. |
[11] |
YANG Wen-feng1*, QIAN Zi-ran1, CAO Yu2, WEI Gui-ming1, ZHU De-hua2, WANG Feng3, FU Chan-yuan1. Research on the Controllability of Aircraft Skin Laser Paint Remove Based on Laser-Induced Breakdown Spectrum and Composition Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3233-3239. |
[12] |
HE Ya-xiong1, ZHOU Wen-qi1, KE Chuan2, XU Tao1*, ZHAO Yong1, 2. Review of Laser-Induced Breakdown Spectroscopy in Gas Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2681-2687. |
[13] |
CHEN Geng-yin1, ZHANG Qi-hang1, LIU Yu-zhu1, 2*, ZHANGCHENG Yuan-zhe1, CHEN Yu1, CHEN Guo-qing1, HAN Bo-yuan1, ABULIMITI Bumaliya3*. Online Detection of VOCs Based on LIBS and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2729-2733. |
[14] |
LIAO Wen-long1, LIU Kun-ping2, HU Jian-ping1, GAN Ya1, LIN Qing-yu3, DUAN Yi-xiang3*. Research Advances and Trends of Rapid Detection Technologies for Pathogenic Bacteria Based on Fingerprint Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2372-2377. |
[15] |
LI Wen-xin1, CHEN Guang-hui1, 3, ZENG Qing-dong1, 2*, YUAN Meng-tian1, 3, HE Wu-guang1, JIANG Ze-fang1, LIU Yang1, NIE Chang-jiang1, YU Hua-qing1, GUO Lian-bo2. Rapid Classification of Steel by a Mobile Laser-Induced Breakdown Spectroscopy Based on Optical Fiber Delivering Laser Energy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2638-2643. |
|
|
|
|