|
|
|
|
|
|
Research Advances and Trends of Rapid Detection Technologies for Pathogenic Bacteria Based on Fingerprint Spectroscopy |
LIAO Wen-long1, LIU Kun-ping2, HU Jian-ping1, GAN Ya1, LIN Qing-yu3, DUAN Yi-xiang3* |
1. College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
2. Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610106, China
3. Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610064, China |
|
|
Abstract Pathogen detection is essential to ensure the safety of drinking water and food, and handle public health emergencies. However, the current testing standards or methods have the defects of labor-intensive, time-consuming operation and high cost, which makes it difficult to meet the requirements of high timeliness in modern society. Therefore, developing rapid detection technology for pathogenic bacteria with simple operation and low-cost is extremely urgent. In recent years, with the rapid development of laser and photoelectric detection technologies, laser-based spectral technologies, which can quickly obtain fingerprint information of microorganism, have attracted wide attention from researchers. Among them, surface enhanced Raman spectroscopy (SERS) and laser induced breakdown spectroscopy (LIBS) with the advantages of rapid, non-destructive or micro-destructive detection in situ have been widely investigated in rapid detection of pathogens. As a molecular vibrational spectroscopy technique, SERS introduces noble metal nanostructures with optical signal amplification capability into conventional Raman spectroscopy, which can enhance the Raman signal order of magnitude while quenching fluorescence, so that the fingerprint spectrum information of the whole bacterial cells can be quickly obtained. However, due to the material, morphology, and size of noble metal nanoparticles and the distance between nanoparticles and the target, reproducibility is still a major bottleneck for SERS in bacterial detection. As an emerging atomic emission spectroscopy technique, LIBS has the capability of real-time detection of multiple elements, and can quickly obtain all element information of samples including micro and trace elements. When using LIBS to classify and identify bacteria, in order to reduce the elemental interference of the substrate and the coexisting matrix, it is necessary to collect a large number of spectral data of pure cultured bacteria, which not only increases the detection period but also lost the quantitative capability at the same time. In view of the research status of SERS and LIBS technology in the rapid detection of pathogenic bacteria, this review summarized the advantages and limitations of the two methods and forecasted their research trends in the fields of bacterial detection, thus providing references for the development of rapid detection techniques for pathogens based on laser spectroscopy.
|
Received: 2020-05-30
Accepted: 2020-09-12
|
|
Corresponding Authors:
DUAN Yi-xiang
E-mail: yduan@scu.edu.cn
|
|
[1] Law J W-F, Ab Mutalib N-S, Chan K-G, et al. Front. Microbiol., 2015, 5: 770.
[2] Zhang J, Wang S, Liu K, et al. Anal. Chem., 2015, 87(5): 2959.
[3] YANG Xiao-tao, FEI Hong-zi, XIE Wen-qiang(杨晓涛, 费红姿, 谢文强). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(6): 1960.
[4] Liu X, Liu X, Rong P, et al. TrAC, Trends Anal. Chem., 2020, 123: 115765.
[5] Fortes F J, Moros J, Lucena P, et al. Anal. Chem., 2013, 85(2): 640.
[6] SHAO Yan, ZHANG Yan-bo, GAO Xun, et al(邵 妍,张艳波,高 勋,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(33): 2593.
[7] Raman C V, Krishnan K S, Nature, 1928, 121: 501.
[8] Willemse-Erix D F M, Scholtes-Timmerman M J, Jachtenberg J-W, et al. J. Clin. Microbiol., 2009, 47(3): 652.
[9] Efrima S, Zeiri L. J Raman Spectrosc., 2010, 40(3): 277.
[10] Dalterio R A, Baek M, Nelson W H, et al. Appl. Spectrosc., 1987, 41(2): 241.
[11] Spiro T G. Acc. Chem. Res., 1974, 7(10): 339.
[12] Wu Q, Hamilton T, Nelson W H, et al. Anal. Chem., 2001, 73(14): 3432.
[13] Nelson W, Manoharan R, Sperry J. Appl. Spectrosc. Rev., 1992, 27(1): 67.
[14] Fleischmann M, Hendra P J, McQuillan A J. Chem. Phys. Lett., 1974, 26(2): 163.
[15] Wang Z, Zong S, Wu L, et al. Chem. Rev., 2017, 117(12): 7910.
[16] Jarvis R M, Goodacre R. Anal. Chem., 2004, 76(1): 40.
[17] Mulvihill M J, Ling X Y, Henzie J, et al. J. Am. Chem. Soc., 2010, 132(1): 268.
[18] Wang Y, Lee K, Irudayaraj J. J. Phys. Chem. C, 2010, 114(39): 16122.
[19] Chen L, Mungroo N, Daikuara L, et al. J. Nanobiotechnol., 2015, 13(1): 45.
[20] Efrima S, Zeiri L. J. Raman Spectrosc., 2009, 40(3): 277.
[21] Liu Y, Zhou H, Hu Z, et al. Biosens. Bioelectron., 2017, 94: 131.
[22] Meng X, Wang H, Chen N, et al. Anal. Chem., 2018, 90(9): 5646.
[23] Ko J, Park S-G, Lee S, et al. ACS Appl. Mater. Interfaces, 2018, 10(8): 6831.
[24] Panneerselvam R, Liu G K, Wang Y H, et al. Chem. Commun., 2018, 54(1): 10.
[25] Li J F, Huang Y F, Ding Y, et al. Nature, 2010, 464(7287): 392.
[26] Anema J R, Li J F, Yang Z L, et al. Annu. Rev. Anal. Chem., 2011, 4(1): 129.
[27] Qian K, Yang L, Li Z, et al. J. Raman Spectrosc., 2013, 44(1): 21.
[28] Yang L, Li P, Liu H, et al. Chem. Soc. Rev., 2015, 44(10): 2837.
[29] Tian L, Su M, Yu F, et al. Nat. Commun., 2018, 9(1): 3642.
[30] Yu F, Su M, Tian L, et al. Anal. Chem., 2018, 90(8): 5232.
[31] Liu H, Yang Z, Meng L, et al. J. Am. Chem. Soc., 2014, 136(14): 5332.
[32] Zhou H, Yang D, Ivleva N P, et al. Anal. Chem., 2014, 86(3): 1525.
[33] Li H, Wang L, Chai Y, et al. Nanotoxicology, 2018, 12(10): 1230.
[34] Ramsden S A, Savic P. Nature, 1964, 203(4951): 1217.
[35] Runge E F, Minck R W, Bryan F R, Spectrochim. Acta, 1964, 20(4): 733.
[36] Winefordner J D, Gornushkin I B, Correll T, et al. J. Anal. Atom. Spectrom., 2004, 19(9): 1061.
[37] Gottfried J L, De Lucia J F C, Munson C A, et al. J. Anal. Atom. Spectrom., 2008, 23(2): 205.
[38] Wallin S, Pettersson A, Östmark H, et al. Anal. Bioanal. Chem., 2009, 395(2): 259.
[39] Rehse S J. The Physics Teacher, 2009, 47(3): 152.
[40] Singh V K, Sharma J, Pathak A K, et al. Biophys. Rev., 2018, 10(5): 1221.
[41] Rehse S J. Spectrochim Acta B, 2019, 154: 50.
[42] Liu X Y, Zhang W J. J. Biomed. Sci. Eng., 2008, 1(3): 147.
[43] Singh V K, Rai A K. Laser Med. Sci., 2011, 26(5): 673.
[44] Morel S, Leone N, Adam P, et al. Appl. Opt., 2003, 42(30): 6184.
[45] Samuels A C, DeLucia F C, McNesby K L, et al. Appl. Opt., 2003, 42(30): 6205.
[46] Kim T, Specht Z G, Vary P S, et al. J. Phys. Chem. B, 2004, 108(17): 5477.
[47] Freeman J R, Harilal S S, Diwakar P K, et al. Spectrochim Acta B, 2013, 87: 43.
[48] Rohwetter P, Yu J, Méjean G, et al. J. Anal. Atom. Spectrom., 2004, 19(4): 437.
[49] Rohwetter P, Stelmaszczyk K, Wöste L, et al. Spectrochim Acta B, 2005, 60(7): 1025.
[50] Baudelet M, Guyon L, Yu J, et al. Appl. Phys. Lett., 2006, 88(6): 063901.
[51] Multari R A, Cremers D A, Bostian M L. Appl. Opt., 2012, 51(7): B57.
[52] Multari R A, Cremers D A, Bostian M L, et al. Journal of Pathogens, 2013, 2013: 1.
[53] Manzoor S, Moncayo S, Navarro-Villoslada F, et al. Talanta, 2014, 121: 65.
[54] Malenfant D J, Paulick A E, Rehse S J. Spectrochim Acta B, 2019, 158: 105629.
[55] Paulick A E, Malenfant D J, Rehse S J. Spectrochim Acta B, 2019, 157: 68.
[56] Yang E, Liao W, Lin Q, et al. Anal. Chem., 2020, 92(12): 8090.
[57] DeLucia F C, Samuels A C, Harmon R S, et al. IEEE Sens. J., 2005, 5(4): 681.
[58] De Lucia J F C, Gottfried J L, Munson C A, et al. Appl Optics, 2008, 47(31): G112.
[59] Marcos-Martinez D, Ayala J A, Izquierdo-Hornillos R C, et al. Talanta, 2011, 84(3): 730.
[60] Prochazka D, Mazura M, Samek O, et al. Spectrochim Acta B, 2018, 139: 6.
[61] Liao W, Lin Q, Xie S, et al. Anal. Chim. Acta, 2018, 1043: 64.
[62] Liao W, Lin Q, Xu Y, et al. Nanoscale, 2019, 11(12): 5346.
[63] Wu J, Liu Y, Cui Y, et al. Biosens. Bioelectron., 2019, 142: 111508. |
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[3] |
ZHANG Xing-long1, LIU Yu-zhu1, 2*, SUN Zhong-mou1, ZHANG Qi-hang1, CHEN Yu1, MAYALIYA·Abulimiti3*. Online Monitoring of Pesticides Based on Laser Induced Breakdown
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1711-1715. |
[4] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[5] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[6] |
YANG Lin-yu1, 2, 3, DING Yu1, 2, 3*, ZHAN Ye4, ZHU Shao-nong1, 2, 3, CHEN Yu-juan1, 2, 3, DENG Fan1, 2, 3, ZHAO Xing-qiang1, 2, 3. Quantitative Analysis of Mn and Ni Elements in Steel Based on LIBS and GA-PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1804-1808. |
[7] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[8] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[9] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[10] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[11] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[12] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[13] |
LI Meng-meng1, TENG Ya-jun2, TAN Hong-lin1, ZU En-dong1*. Study on Freshwater Cultured White Pearls From Anhui Province Based on Chromaticity and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1504-1507. |
[14] |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen. Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1022-1027. |
[15] |
HE Ya-xiong1, 2, ZHOU Wen-qi1, 2, ZHUANG Bin1, 2, ZHANG Yong-sheng1, 2, KE Chuan3, XU Tao1, 2*, ZHAO Yong1, 2, 3. Study on Time-Resolved Characteristics of Laser-Induced Argon Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1049-1057. |
|
|
|
|