|
|
|
|
|
|
Research Progress in the Application of Raman Spectroscopy in Petroleum Geology |
LIU Qiang1, LIU Shao-bo1, 2, LU Xue-song1, 2*, FAN Jun-jia1, 2, TIAN Hua1, 2, MA Xing-zhi1, 2, GUI Li-li1, 2 |
1. PetroChina Research Institute of Petroleum Exploration and Development, Beijing 100083, China
2. CNPC Key Laboratory of Basin Structure and Hydrocarbon Accumulation, Beijing 100083, China
|
|
|
Abstract Raman spectroscopy has the advantages of being simple, rapid, in-situ, micro-zone, non-destructive, high resolution and high sensitivity, can be used to analyze the composition and molecular structure information of substances and is a powerful tool for geological research. By reviewing the research progress of Raman spectroscopy in recent years, the application of Raman spectroscopy in petroleum geology research is summarized based on the practical oil and gas geology research, analysis and testing experience, then the existing problems in the application process and the future development direction is discussed. Raman spectroscopy application in petroleum geology is mainly divided into three aspects: (1) the mineral and fluid inclusion analysis, which can determine the type and composition of diagenetic fluid and hydrocarbon, diagenesis and hydrocarbon accumulation process, including rock and mineral identification, analysis of the fluid system in fluid inclusions, water and rock interaction process, isotope study of geological samples, etc.; (2) Different types of organic matter analysis can be used to reconstruct thermal history and constrain the stages of hydrocarbon accumulation; (3) Fluid inclusion pressure recovery can be used to study the formation and evolution process of oil and gas reservoirs. The main way to recover fluid inclusions and trapping pressure is using the displacement variation of gas Raman characteristic peak and gas solubility. In practical petroleum geology research, the quantitative and semi-quantitative application of Raman spectroscopy is restricted by many factors, including the complexity and particularity of geological samples, sample processing methods, Raman testing parameters and testing environment Raman spectrum data processing and analysis methods. Standardization of Raman spectrum testing and analysis process, selection and preparation of calibration samples Combining Raman spectroscopy with heating-freezing stage, hydrothermal diamond-anvil cell (HDAC), high-pressure optical cell (HPOC), scanning electron microscope (SEM), electron probe (EPMA) and other instruments to carry out in-situ. Real-time and different temperature and pressure testing of complex systems is the research direction for further application of Raman spectroscopy in petroleum geology.
|
Received: 2021-08-13
Accepted: 2021-12-27
|
|
Corresponding Authors:
LU Xue-song
E-mail: luxs@petrochina.com.cn
|
|
[1] Frezzotti M L, Tecce F, Casagli A. Journal of Geochemical Exploration, 2012, 112: 1.
[2] Griffith W P. Nature, 1969, 224: 264.
[3] Tuinstra F, Koenig J L. Journal of Chemical Physics, 1970, 53(3): 1126.
[4] Rosasco G J, Roedder E, Simmons J H. Science, 1975, 190(4214): 557.
[5] Gillet P, Biellmann C, Reynard B, et al. Physics and Chemistry of Minerals, 1993, 20: 1.
[6] Schmidt C, Ziemann M. American Mineralogist, 2000, 85: 1725.
[7] Kelemen S R, Fang H L. Energy & Fuels, 2001, 15(3): 653.
[8] Beyssac O, Goffé B, Chopin C, et al. Journal of Metamorphic Geology, 2002, 20(9): 859.
[9] Quirico E, Rouzaud J N, Bonal L, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2005, 61(10): 2368.
[10] Marques M, Suárez-Ruiz I, Flores D, et al. International Journal of Coal Geology, 2009, 77(3-4): 377.
[11] LIU De-han, XIAO Xian-ming, TIAN Hui, et al(刘德汉, 肖贤明, 田 辉, 等). Chinese Science Bulletin(科学通报), 2013, 58(13): 1228.
[12] Zhou Q, Xiao X, Pan L, et al. International Journal of Coal Geology, 2014, 121: 19.
[13] Wilkins R, Wang M, Gan H, et al. International Journal of Coal Geology, 2015, 150-151: 252.
[14] nan S, Goodarzi F, Mumm S A, et al. International Journal of Coal Geology, 2016, 159: 107.
[15] Bonold I L, Paolo L D, Flego C. Vibrational Spectroscopy, 2016, 87: 14.
[16] Lupoi J S, Fritz L P, Parris T M, et al. Frontiers in Energy Research, 2017, 5.
[17] Schito A, Corrado S. Application of Analytical Techniques to Petroleum Systems. London: Geological Society, 2018, 484.
[18] Henry D G, Jarvis I, Gillmore G, et al. International Journal of Coal Geology, 2018, 191: 135.
[19] Wang Y, Qiu N, Borjigin T, et al. Marine and Petroleum Geology, 2019, 100: 447.
[20] Zhang Y, Li Z. Fuel, 2019, 241: 188.
[21] XIAO Xian-ming, ZHOU Qin, CHENG Peng, et al(肖贤明, 周 秦, 程 鹏,等). SCIENCE CHINA Earth Sciences(中国科学: 地球科学), 2020, 50(9): 1228.
[22] Schrötter H W, Iöcner H W. Raman Spectroscopy of Gases and Liquids. Berlin: Springer, 1979, 123.
[23] Fang J, Chou I M, Chen Y. Journal of Raman Spectroscopy, 2018, 49(4): 710.
[24] ZHANG Nai, MAO Guang-jian, WANG Hui-tong, et al(张 鼐, 毛光剑, 王汇彤, 等). Geochimica(地球化学), 2010, 39(4): 345.
[25] ZHANG Nai, TIAN Zuo-ji, LENG Ying-ying, et al(张 鼐, 田作基, 冷莹莹, 等). SCIENCE CHINA Earth Sciences(中国科学: 地球科学), 2007, (7): 900.
[26] CHEN Yong, LIU Wei-yi, WANG Xin-tao (陈 勇, 刘唯一, 王鑫涛). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(8): 2510.
[27] CHEN Yong, LIU Wei-yi, WANG Xin-tao, et al (陈 勇, 刘唯一, 王鑫涛, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(11): 3349.
[28] Seitz J C, Pasteris J D, Chou I M. American Journal of Science, 1993, 293: 297.
[29] Rosso K M, Bodnar R J. Geochimica et Cosmochimica Acta, 1995, 59(19): 3961.
[30] Seitz J C, Pasteris J D, Chou I M. American Journal of Science, 1996, 296: 577.
[31] Lin F, Bodnar R J, Becker S P. Geochimica et Cosmochimica Acta, 2007, 71(15): 3746.
[32] Lu W, Chou I M, Burruss R C, et al. Geochimica et Cosmochimica Acta, 2007, 71(16): 3969.
[33] Wang X, Chou I M, Hu W, et al. Geochimica et Cosmochimica Acta, 2011, 75(14): 4080.
[34] Fall A, Tattitch B, Bodnar R J. Geochimica et Cosmochimica Acta, 2011, 75(4): 951.
[35] Zhang J, Qiao S, Lu W, et al. Journal of Geochemical Exploration, 2016, 171: 20.
[36] Lamadrid H M, Moore L R, Moncada D, et al. Chemical Geology 2017, 450: 210.
[37] Wang W, Caumon M, Tarantola A, et al. Chemical Geology, 2019, 528: 119281.
[38] Le V H, Caumon M C, Tarantola A, et al. Analytical Chemistry, 2019, 91(22): 14359.
[39] Le V H, Caumon M, Tarantola A, et al. Chemical Geology, 2020, 552.
[40] GAO Wan-lu, WANG Xiao-lin, QIU Ye, et al(高婉露, 王小林, 丘 靥, 等). Geochimica(地球化学), 2020, 49(2): 121.
[41] Walrafen G E. The Journal of Chemical Physics, 1962, 36(4): 1035.
[42] Mernagh T P, Wilde A R. Geochimica et Cosmochimica Acta, 1989, 53(4): 765.
[43] Dubessy J, Boiron M-C, Moissette A, et al. European Journal of Mineralogy, 1992, 4(5): 885.
[44] Furic K, Ciglenečki I, Cosovic B. Journal of Molecular Structure, 2000, 550-551: 225.
[45] Dubessy J, Lhomme T, Boiron M C, et al. Applied Spectroscopy, 2002, 56(1): 99.
[46] CHEN Yong, ZHOU Yao-qi, ZHANG Da-gang(陈 勇, 周瑶琪, 章大港). Chinese Journal of Light Scattering(光散射学报),2003, (4): 216.
[47] Baumgartner M, Bakker R J. Mineralogy and Petrology, 2009, 95(1): 1.
[48] Sun Q, Zhao L, Li N, et al. Chemical Geology, 2010, 272: 55.
[49] Sun Q, Qin C. Chemical Geology, 2011, 283: 274.
[50] Caumon M, Dubessy J, Robert P, et al. European Journal of Mineralogy, 2013, 25(5): 755.
[51] Wang X, Hu W, Chou I M. Journal of Geochemical Exploration, 2013, 132: 111.
[52] Chu H, Chi G. Acta Geologica Sinica, 2015, 89(3): 894.
[53] Qiu Y, Yang Y, Wang X, et al. Chemical Geology, 2020, 533: 119447.
[54] TIAN Feng, ZHENG Hai-fei, SUN Qiang(田 峰, 郑海飞, 孙 强). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(4): 2510.
[55] Dubessy J, Buschaert S, Lamb W, et al. Chemical Geology, 2001, 173(1): 193.
[56] Guillaume D, Teinturier S, Dubessy J, et al. Chemical Geology, 2003, 194(1-3): 41.
[57] LU W, Chou I M, Burruss R C, et al. Applied Spectroscopy, 2006, 60: 122.
[58] Azbej T, Severs M J, Rusk B G, et al. Chemical Geology, 2007, 237(3): 255.
[59] Lu W, Chou I M, Burruss R C. Geochimica et Cosmochimica Acta, 2008, 72(2): 412.
[60] Lu W, Guo H, Chou I M, et al. Geochimica et Cosmochimica Acta, 2013, 115: 183.
[61] Caumon M, Robert P, Laverret E, et al. Chemical Geology, 2014, 378-379: 52.
[62] Ou W, Guo H, Lu W, et al. Chemical Geology, 2015, 417: 1.
[63] Ou W, Geng L, Lu W, et al. Fluid Phase Equilibria, 2015, 391: 18.
[64] Caumon M, Dubessy J, Robert P, et al. Energy Procedia, 2017, 114: 4843.
[65] Caumon M, Sterpenich J, Randi A, et al. Energy Procedia, 2017, 114: 4851.
[66] Jiang L, Xin Y, Chou I-M, et al. Chemical Geology, 2020, 555: 119816.
[67] Sum A K, Burruss R C, Sloan E D. The Journal of Physical Chemistry B, 1997, 101(38): 7371.
[68] FU Juan, WU Neng-you, LU Hai-long, et al(付 娟, 吴能友, 卢海龙, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2015, 35(11): 2996.
[69] Arakawa M, Yamamoto J, Kagi H. Apply Spectroscopy, 2007, 61(7): 701.
[70] WANG Shi-xia, ZHENG Hai-fei(王世霞, 郑海飞). Acta Mineralogica Sinica(矿物学报), 2011, 31(2): 230.
[71] Geisler T, Perdikouri C, Kasioptas A, et al. Geochimica et Cosmochimica Acta, 2012, 90: 1.
[72] Li J, Li R, Zhao B, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 195: 191.
[73] LI Jia-jia, LI Rong-xi, DONG Hui, et al(李佳佳, 李荣西, 董 会, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(4): 1139.
[74] Mcmillan P F. Annual Review of Earth and Planetary Sciences, 1989, 17(1): 255.
[75] CHEN Yong, Burke E A(陈 勇, Burke E A). Geological Review(地质论评), 2009, 55(6): 851.
[76] Burke E A. Lithos, 2001, 55(1): 139.
[77] Dubessy J, Poty B, Ramboz C. European Journal of Mineralogy, 1989, 1(4): 517.
[78] Wopenka B, Pasteris J D. Applied Spectroscopy, 1986, 40(2): 144.
[79] Zheng H, Qiao E, Yang Y, et al. Geoscience Frontiers, 2011, 2(3): 403.
[80] LI Jia-jia, LI Rong-xi, LIU Hai-qing(李佳佳, 李荣西, 刘海青). Physical Testing and Chemical Analysis(Part B: Chemical Analysis)[理化检验(化学分册)], 2016, 52(7): 859.
[81] GAO Xiao-ying, XIA Mei, ZHOU Shan-yong, et al(高晓英, 夏 梅, 周善勇, 等). Acta Petrologica Sinica(岩石学报), 2021, 37(4): 974.
[82] Henry D G, Jarvis I, Gillmore G, et al. Earth-Science Reviews, 2019, 198: 102936.
[83] LI Rong-xi, WANG Zhi-hai, LI Yue-qin(李荣西, 王志海, 李月琴). Earth Science Frontiers(地学前缘), 2012, 19(4): 135.
[84] Burruss R C, Slepkov A D, Pegoraro A F, et al. Geology, 2012, 40(12): 1063.
[85] Larkin P. Infrared and Raman Spectroscopy. London: Elservier, 2011, 7.
[86] HE Jia-le, GONG Ting-ting, PAN Zhong-xi, et al(何佳乐, 龚婷婷, 潘忠习, 等). Rock and Mineral Analysis(岩矿测试), 2021, 40(4): 491.
[87] Wille G, Lerouge C, Schmidt U. Journal of Microscopy, 2018, 270(3): 309.
[88] Vratislav H, Monika H, Marek S, et al. Geofluids: Developments in Microthermometry, Spectroscopy, Thermodynamics, and Stable Isotopes. London: Elsevier, 2015. 232.
[89] Chu H, Chi G, Xue C. Minerals, 2020, 10(11).
[90] Ye Y, Liu C. Natural Gas Hydrates. Berlin: Springer, 2013, 327.
[91] Du Z, Zhang X, Xi S, et al. Journal of Asian Earth Sciences, 2018, 168: 197.
[92] LIU Shi-qi, CHEN Sen-ran, LIU bo, et al(刘诗琦, 陈森然, 刘 波, 等). Oil & Gas Geology(石油与天然气地质), 2021, 42(3): 702.
[93] Henry D G, Jarvis I, Gillmore G, et al. International Journal of Coal Geology, 2019, 203: 87.
[94] Yang Y, Zheng H. Applied Spectroscopy, 2009, 63(1): 120.
[95] Schmidt C. Geochimica et Cosmochimica Acta, 2009, 73(2): 425.
[96] QIAO Er-wei, DUAN Ti-yu, ZHENG Hai-fei(乔二伟, 段体玉, 郑海飞). Acta Mineralogica Sinica(矿物学报), 2006, 26(1): 89.
[97] QIAO Er-wei, ZHENG Hai-fei, XU Bei(乔二伟, 郑海飞, 徐 备). Acta Petrologica Sinica(岩石学报), 2008, 24(9): 1981.
[98] LU Huan-zhang, FAN Hong-rui, NI Pei, et al(卢焕章, 范宏瑞, 倪 培, 等). Fluid Inclusion(流体包裹体). Beijing: Science Press(北京:科学出版社), 2004, 132.
[99] Biehl B C, Reuning L, Schoenherr J, et al. AAPG Bulletin, 2016, 100(4): 597.
[100] Rosasco G J, Roedder E. Geochimica et Cosmochimica Acta, 1979, 43(12): 1907.
[101] Chen Y, Wang X, Bodnar R J. Organic Geochemistry, 2016, 101: 63.
[102] Jayanthi J L, Nandakumar V, Anoop S S. Petroleum Geoscience, 2017, 23(3): 369.
[103] TIAN Jian-zhang, CHEN Yong, HOU Feng-xiang,et al(田建章, 陈 勇, 侯凤香, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(1): 131.
[104] Sauerer B, Craddock P R, Aljohani M D, et al. International Journal of Coal Geology, 2017, 173: 150.
[105] Wang M, Lu W, Li L, et al. Applied Spectroscopy, 2014, 68(5): 536.
[106] Lamadrid H M, Steele-Macinnis M, Bodnar R J. Journal of Raman Spectroscopy, 2018, 49(3): 581.
[107] Thieu V, Subramanian S, Colgate S O, et al. Annals of the New York Academy of Sciences, 2006, 912(1): 983.
[108] Hansen S B, Berg R W, Stenby E H. Applied Spectroscopy, 2001, 55(6): 745.
[109] Duan Z, Møller N, Greenberg J, et al. Geochimica et Cosmochimica Acta, 1992, 56(4): 1451
[110] Duan Z, Sun, R, Zhu C, et al. Marine Chemistry, 2006, 98(2-4): 131.
[111] Mao S, Duan Z, Zhang D, et al. Geochimica et Cosmochimica Acta, 2011, 75(20): 5892.
[112] Guo H, Chen Y, Hu Q, et al. Fluid Phase Equilibria, 2014, 382: 70.
[113] Wu X, Lu W, Ou W, et al. Journal of Raman Spectroscopy, 2017, 48(2): 314.
|
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|