|
|
|
|
|
|
Research Progress of Spectroscopy Detection Technologies for Waterborne Pathogens |
HU Yu-xia1, CHEN Jie1, SHAO Hui1, YAN Pu1, XU Heng1, SUN Long1, XIAO Xiao1, XIU Lei3, FENG Chun2GAN Ting-ting2, ZHAO Nan-jing2* |
1. School of Electronic and Information Engineering, Anhui Jianzhu University, Hefei 230601, China
2. Key Laboratory of Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
3. School of Advanced Manufacturing Engineering, Hefei University, Hefei 230601, China
|
|
|
Abstract Waterborne pathogenic bacteria contamination can cause various diseases, seriously endangering human health and public health security. Waterborne pathogen detection is important to human health care, water safety and disease diagnosis. Conventional waterborne pathogen detection techniques, such as artificial culture, molecular biology and immunology, are accurate and effective, but sample pre-treatment is cumbersome and time-consuming, not conducive to real-time online detection of pathogenic bacteria. Spectral detection technology to non-invasive access to pathogenic bacteria emission, scattering or absorption spectral characteristics, able to determine the nature, structure and content of pathogenic bacteria and other information. Due to the advantages of easy operation, rapidity, portability, non-destructiveness and ease of real-time monitoring, this technique has many application prospects in environmental monitoring and bioanalysis. The article introduces the existing waterborne pathogen detection techniques and their advantages and disadvantages, points out the necessity of rapid and efficient detection of pathogenic bacteria; discusses the principles of spectroscopic detection techniques and data analysis methods, focusing on the working principles and research progress of UV/Vis spectroscopy, fluorescence spectroscopy, infrared spectroscopy, Raman spectroscopy and terahertz spectroscopy in the detection of waterborne pathogenic bacteria; finally summarizes the advantages and disadvantages of each technique. The challenges and strategies for the practical application of spectroscopic techniques in detecting pathogenic bacteria are presented to provide a reference for further development of rapid detection of waterborne pathogens based on spectroscopic techniques.
|
Received: 2021-08-01
Accepted: 2021-11-14
|
|
Corresponding Authors:
ZHAO Nan-jing
E-mail: njzhao@aiofm.ac.cn
|
|
[1] Fleming-Dutra K E,Hersh A L, Shapiro D J, et al. JAMA, 2016, 315(17): 1864.
[2] Butler H J, Ashton L, Bird B, et al. Nat. Protoc., 2016, 11: 664.
[3] Krause A, Guestrin C. Comput., 2009, 42: 38.
[4] Richardson S D. Anal. Chem., 2004, 76: 3337.
[5] Stokes D L, Griffin G D, Vo-Dinh T. Fresenius J. Anal. Chem., 2001, 369(3-4): 295.
[6] Nenonen N P, Hannoun C, Larsson C U, et al. Applied and Environmental Microbiology, 2012, 78(6): 1846.
[7] Bridge J W, Oliver D M, Chadwick D, et al. Bulletin of the World Health Organisation, 2010, 88: 873.
[8] Au K K, Alpert S M, Pernitsky D J. Particle and Natural Organic Matter Removal in Drinking Water. in: Operational Control of Coagulation and Filtration Processes, 2014.
[9] EPA, Standard Methods 9131, Total Coliform: Multiple Tube Fermentation Technique, https://www.epa.gov/sites/production/files/2015-12/documents/9131.pdf.
[10] Grasso G M, Sammarco M L, Ripabelli G, et al. Microbios, 2000, 103(405): 119.
[11] National Standard of the People’s Republic of China(中华人民共和国国家标准). GB/T 5750.12—2006 Standard Examination Methods for Drinking Water-Microbiological Parameters(生活饮用水标准检验方法微生物指标).
[12] YU Hui,MA Li-li,MAO Guan-nan,et al(余 辉, 马丽丽, 毛冠男, 等). Microbiology China(微生物学通报), 2012, 39(8): 1171.
[13] Fakruddin M. Bangladesh Res. Pub. J.,2011, 5: 425.
[14] Ge S, Peng Y, Qiu S, et al. Water Res., 2014, 55C: 95.
[15] LIU Jing-mei, ZHANG Ling, ZHAO Jun, et al(刘京梅, 张 凌, 赵 君, 等). Journal of Environmental Hygiene(环境卫生学杂志), 2006, 33(2): 117.
[16] Shinde S B, Fernandes C B, Patravale V B. Journal of Controlled Substances, 2012, 159: 164.
[17] XU Shi-zhuo(徐诗卓). Journal of Clinical Medical Literature (Electronic Edition)(临床医药文献电子杂志), 2020, 426(5): 37.
[18] Glindkamp A, Riechers D, Rehbock C, et al. Adv. Biochem. Eng. Biotechnol., 2009, 115: 145.
[19] Hassan M, Gonzalez E, Hitchins V, et al. Sensors and Actuators B: Chemical, 2016, 231: 646.
[20] Leblanc L, Dufour E. FEMS Microbiol. Lett., 2002, 211(2): 147.
[21] WANG Cheng, SHI Ji-yi, ZHENG Gang, et al(王 成, 史继毅, 郑 刚, 等). Optical Instruments(光学仪器), 2020, 42(2): 26.
[22] LI Mao-gang, YAN Chun-hua, DU Yao, et al(李茂刚, 闫春华, 杜 瑶,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(7): 2099.
[23] DENG Yong, LU Qiang, LUO Qing-ming(邓 勇, 鲁 强, 骆清铭). Acta Optica Sinica(光学学报), 2006, 26(8): 1214.
[24] Burgess C, Thomas O, Cerda V. UV-Visible Spectrophotometry of Water and Wastewater. Elsevier, Amsterdam, 2007.
[25] Hu Yuxia, Zhao Nanjing, Gan Tingting, et al. Journal of Spectroscopy, 2017,2017: 4039048.
[26] Loske A M, Tello E M, Vargas S, et al. Arch. Microbiol., 2014, 196: 557.
[27] DONG Zi-yan(董自艳). Drug Standards of China(中国药品标准), 2014, 15(2): 120.
[28] Edlich A, Magdanz V, Rasch D, et al. Biotechnol. Prog.,2010, 26: 1259.
[29] Lakowicz J R. Principles of Fluorescence Spectroscopy. NewYork: Springer, 2006.
[30] Kessler R W. Prozessanalytik: Strategien und Fallbeispiele aus Derindustriellen Praxis. Weinheim: Wiley, 2006.
[31] Giana H E, Silveira L, Zangaro R A, et al. Journal of Fluorescence, 2003, 13(6): 489.
[32] Schreier S, Doungchawee G, Triampo D, et al. Acta Tropica, 2012, 122: 119.
[33] Khan M M T, Pyle B H, Camper A K. Applied and Environmental Microbiology, 2010, 76: 5088.
[34] LI Su-wen, HUO Man-peng, CHENG Ru-xuan, et al(李素文, 霍满鹏, 成汝萱, 等). Acta Biophysica Sinica(生物物理学报), 1987, 3(4): 420.
[35] Alvarez-Ordonez A, Mouwen D J M, Lopez M, et al. Journal of Microbiological Methods, 2011, 84: 369.
[36] Vargas C A, Wilhelm A A, Williams J, et al. Applied and Environmental Microbiology, 2009, 75: 6431.
[37] Erukhimovitch V, Huleihil M, Huleihel M. Journal of Spectroscopy, 2013, 2013: 317458.
[38] LI Zhao-jie, ZHANG Yu-chun, LIU Yu-min, et al(李兆杰, 张玉春, 刘玉敏, 等). Periodical of Ocean University of China(中国海洋大学学报), 2018, 48(1): 57.
[39] GUO Zhen-dong, ZHAO Si-yan, ZHANG Yi, et al(郭振东, 赵思言, 张 毅, 等). Military Medical Sciences(军事医学), 2015, (4): 311.
[40] Escoriza M F, VanBriesen J M, Stewart S, et al. Journal of Microbiological Methods, 2006, 66: 63.
[41] Silge A, Schumacher W, Rösch P, et al. Syst. Appl. Microbiol.,2014, 37: 360.
[42] Grun J, Manka C K, Nikitin S. Anal. Chem., 2007, 79(14): 5489.
[43] Jarvis R M, Goodacre R. FEMS Microbiology Letters, 2004, 232(2): 127.
[44] Fan C, Riley L K, Purdy G A, et al. Journal of Food Science, 2010, 75: 302.
[45] Grow A E, Wood L L, Claycomb J L, et al. Journal of Microbiological Methods, 2003, 53: 221.
[46] Mantsch H H, Naumann D. J. Mol. Struct., 2010, 964: 1.
[47] YU Wen-jing, YANG Xiang, LIU Yu, et al(余闻静, 杨 翔, 刘 羽, 等). Journal of Third Military Medical University(第三军医大学学报), 2017, 39(13): 1315.
[48] Mazhorova A, Markov A, Ng A, et al. Opt. Express, 2012, 20(5): 5344.
[49] Yang X, Wei D, Yan S, et al. Journal of Biophotonics, 2016, 9(10): 1050.
[50] Habash M, Johns R. Journal of Microbiological Methods, 2009, 79: 128.
[51] Ghosh K K, Burns L D, Cocker E D, et al. Nature Methods, 2011, 8: 871.
|
[1] |
FAN Ping-ping,LI Xue-ying,QIU Hui-min,HOU Guang-li,LIU Yan*. Spectral Analysis of Organic Carbon in Sediments of the Yellow Sea and Bohai Sea by Different Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 52-55. |
[2] |
YANG Chao-pu1, 2, FANG Wen-qing3*, WU Qing-feng3, LI Chun1, LI Xiao-long1. Study on Changes of Blue Light Hazard and Circadian Effect of AMOLED With Age Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 36-43. |
[3] |
LEI Hong-jun1, YANG Guang1, PAN Hong-wei1*, WANG Yi-fei1, YI Jun2, WANG Ke-ke2, WANG Guo-hao2, TONG Wen-bin1, SHI Li-li1. Influence of Hydrochemical Ions on Three-Dimensional Fluorescence
Spectrum of Dissolved Organic Matter in the Water Environment
and the Proposed Classification Pretreatment Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 134-140. |
[4] |
LI Yu1, ZHANG Ke-can1, PENG Li-juan2*, ZHU Zheng-liang1, HE Liang1*. Simultaneous Detection of Glucose and Xylose in Tobacco by Using Partial Least Squares Assisted UV-Vis Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 103-110. |
[5] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[6] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[7] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[8] |
WANG Hong-jian1, YU Hai-ye1, GAO Shan-yun1, LI Jin-quan1, LIU Guo-hong1, YU Yue1, LI Xiao-kai1, ZHANG Lei1, ZHANG Xin1, LU Ri-feng2, SUI Yuan-yuan1*. A Model for Predicting Early Spot Disease of Maize Based on Fluorescence Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3710-3718. |
[9] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[10] |
SONG Yi-ming1, 2, SHEN Jian1, 2, LIU Chuan-yang1, 2, XIONG Qiu-ran1, 2, CHENG Cheng1, 2, CHAI Yi-di2, WANG Shi-feng2,WU Jing1, 2*. Fluorescence Quantum Yield and Fluorescence Lifetime of Indole, 3-Methylindole and L-Tryptophan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3758-3762. |
[11] |
YANG Ke-li1, 2, PENG Jiao-yu1, 2, DONG Ya-ping1, 2*, LIU Xin1, 2, LI Wu1, 3, LIU Hai-ning1, 3. Spectroscopic Characterization of Dissolved Organic Matter Isolated From Solar Pond[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3775-3780. |
[12] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[13] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[14] |
LIANG Jin-xing1, 2, 3, XIN Lei1, CHENG Jing-yao1, ZHOU Jing1, LUO Hang1, 3*. Adaptive Weighted Spectral Reconstruction Method Against
Exposure Variation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3330-3338. |
[15] |
LI Xiao-li1, WANG Yi-min2*, DENG Sai-wen2, WANG Yi-ya2, LI Song2, BAI Jin-feng1. Application of X-Ray Fluorescence Spectrometry in Geological and
Mineral Analysis for 60 Years[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 2989-2998. |
|
|
|
|