|
|
|
|
|
|
Research Progress and Trend of Gas Raman Sensing Enhancement Technology |
WAN Fu1, 2, GE Hu1, 2, LIU Qiang1, 2, KONG Wei-ping1, 2, WANG Jian-xin1, 2, CHEN Wei-gen1, 2 |
1. College of Electrical Engineering, Chongqing University, Chongqing 400044, China
2. State Key Laboratory of Power Transmission and Distribution Equipment and System Safety and New Technology, Chongqing
400044, China
|
|
|
Abstract Whether in scientific research, food safety, medical testing, or in the fields of safety accident prevention, fast, accurate, qualitative and quantitative analysis of multi-component mixed gases has become an urgent need. Raman spectroscopy is a powerful gas sensing method. It can overcome the shortcomings of traditional non-spectroscopic methods, such as long detection time and poor repeatability, and it can also make up for the shortcoming of absorption spectroscopy that cannot directly measure homonuclear diatomic molecules. A single-frequency laser can be used for qualitative and quantitative analysis of multi-component mixed gases. However, due to the inherently weak Raman effect of matter, and the Raman effect of the gas is generally much lower than that of solid and liquid, this greatly limits the wider application of Raman spectroscopy in gas sensing. Improving the scattering intensity of gas is key to making gas Raman sensing technology more widely used. Currently, the most important gas Raman sensing enhancement technology includes cavity enhancement technology and optical fiber enhancement technology. Cavity enhancement technology enhances the Raman scattering signal from the source by increasing the intensity and path of the excitation light that interacts with the gas to be measured, including multiple pass cavity enhancement, F-P cavity enhancement, and laser cavity enhancement. Fiber enhancement, including silver-plated capillary tube enhancement and hollow fiber enhancement, enhances the Raman scattering signal by improving the collection efficiency of spherical scattered light so that most of the Raman scattered light can enter the spectral detector. This paper briefly introduces the enhancement principles of the above two technologies, summarizes the research progress and application status, and discusses their advantages and limitations. Finally, focusing on detecting multi-component trace gases, it looks forward to the future development trend of gas Raman sensing technology. Although the current spectrum analysis method based on the absorption effect dominates the field of gas detection, especially photoacoustic spectroscopy, shortly, gas Raman sensing technology is expected to be more extensive and in-depth in the field of gas detection.
|
Received: 2021-10-21
Accepted: 2022-03-02
|
|
|
[1] CHEN Wei-gen, WAN Fu, et al(陈伟根, 万 福,等). Proceedings of the CSEE(中国电机工程学报), 2015, 35(18): 4833.
[2] JI Yan-song, WANG Cheng-yu, et al(季严松, 王承玉,等). High Voltage Apparatus(高压电器), 2011, 47(2): 100.
[3] WANG Ming-min, SUN Lei, et al(王铭民, 孙 磊,等). High Voltage Technology(高电压技术), 2021, 47(1): 279.
[4] Hippler M. Anal. Chem., 2015, 87(15): 7803.
[5] Yang D, Guo J, Liu Q, et al. Applied Optics, 2016, 55(27): 7744.
[6] Sandfort V, Goldschmidt J, Wöllenstein J, et al. Sensors, 2018, 18(3): 709.
[7] S Matthews D E,Hayes J M. Anal. Chem., 1978, 50(11): 1465.
[8] Cesar W, Flourens F, Kaiser C. Anal. Chem., 2015, 87(11): 5620.
[9] Tierney M J,Kim H O L. Anal. Chem., 1993, 65(23): 3435.
[10] Ionescu R, Llobet E, Vilanova X, et al. Analyst,2002, 127(9): 1237.
[11] Schiff H I, Hastie D R, Mackay G I, et al. Environ. Sci. Technol. , 1983, 17(8): A352.
[12] Havey D K, Bueno P A, Gillis K A. Anal. Chem., 2010, 82(19): 7935.
[13] Lang Ziting, Qiao Shunda, He Ying, et al. Photoacoustics,2021, 22:100272.
[14] Ma Yufei, Hu Yinqiu, Qiao Shunda, et al. Photoacoustics,2020, 20, 100206.
[15] Colthup N B, Daly L H, Wiberley S E. Introduction to Infrared and Raman Spectroscopy. San Diego: Academic Press, 1990.
[16] Smith E, Dent G. Modern Raman Spectroscopy: A Practical Approach. New York: John Wiley & Sons Inc, 2005.
[17] Raman C V,Krishnan K S. Nature, 1928, 121(3048): 501.
[18] Long D A. The Raman Effect. New York: John Wiley & Sons Inc, 2002.
[19] Trutna W R, Byer R L. Appl. Optics, 1980, 19(2): 301.
[20] Utsav K C, Silver J A, Hovde D C, et al. Appl. Optics, 2011, 50(24): 4805.
[21] Hartley D L, Hill R A. Journal of Applied Physics, 1972, 43(10): 4134.
[22] Hill R A, Hartley D L. Applied Optics, 1974, 13(1): 186.
[23] Hill R A, Mulac A J, Hackett C E. Applied Optics, 1977, 16(7): 2004.
[24] Li X Y, Xia Y X, Huang J M, et al. Applied Physics B Lasers & Optics, 2008, 93(2): 665.
[25] Li X, Xia Y, Zhan L, et al. Optics Letters, 2008, 33(18): 2143.
[26] Velez Juan S Gomez, Muller Andreas. Measurement Science and Technology, 2021, 32(4): 045501.
[27] Pound R V. Proc. IRE, 1946, 35(12): 1405.
[28] Drever R W P, Ford G M, Hough J, et al. Gen. Relat. Gravit., 1980, 265.
[29] Drever R W P, Hall J L, Kowalski F V. Appl. Phys. B, 1983, 31(2): 97.
[30] Li H, Abraham N B. IEEE J. Quantum Elect., 1989, 25(8): 1782.
[31] Ohshima S I, Schnatz H. J. Appl. Phys., 1992, 71(7): 3114.
[32] Dahmani B, Hollberg L, Drullinger R. Optics Letters, 1987, 12(11): 876.
[33] Lang R, Kobayashi K. IEEE Journal of Quantum Electronics, 1980, 16(3): 347.
[34] Black E D. American Journal of Physics, 2001, 69(1): 79.
[35] Taylor D J, Glugla M,Penzhorn R D. Rev. Sci. Instrum., 2001, 72(4): 1970.
[36] Friss A J, Limbach C M,Yalin A P. Opt. Lett.,2016, 41(14): 3193.
[37] Lang R. IEEE Journal of Quantum Electronics, 1982, 18(6): 976.
[38] Morville J, Kassi S, Chenevier M. Appl. Phys. B, 2005, 80(8): 1027.
[39] Hippler M, Mohr C, Keen K A,et al. J. Chem. Phys., 2010, 133(4): 044308.
[40] Salter R, Chu J,Hippler M. Analyst, 2012, 137(20): 4669.
[41] Wang P, Chen W, Wan F, et al. Opt. Express, 2019, 27(23): 33312.
[42] Wang P, Chen W, Wang J, et al. Anal. Chem., 2020, 92(8): 5969.
[43] Atmosphere Recovery, INC. Retrieved from http://www.atmrcv.com/.
[44] Pearman W F, Carter J C, Angel S M, et al. Applied Spectroscopy, 2008, 62(3): 285.
[45] GUO Jin-jia, YANG De-wang, LIU Chun-hao(郭金家, 杨德旺, 刘春昊). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2016, 36(1): 96.
[46] James T, Rupp S, Telle H, et al. Analytical Methods, 2015, 7(6): 2568.
[47] Buric M P, Chen K, Falk J, et al. Proc. SPIE, 2009, 7316: 731608.
[48] Buric M P, Chen K, Falk J, et al. Applied Optics, 2009, 48(22): 4424.
[49] Yang X, Chang A, Chen B, et al. Sensors Actuators B: Chemical, 2013, 176: 64.
[50] Jochum T, Rahal L, Suckert R J, et al. Analyst, 2016, 141(6): 2023.
[51] Chow K K, Short M, Lam S,et al. Medical Physics, 2014, 41(9): 092701.
[52] Sandfort V, Trabold B, Abdolvand A, et al. Sensors, 2017, 17(12): 2714.
[53] Yan D, Popp J, Pletz M W, et al. Analytical Methods, 2018, 10(6): 586.
[54] Yan D, Popp J, Pletz M W, et al. ACS Photonics, 2017, 4(1): 138.
[55] Knebl A, Yan D, Popp J, et al. TrAC Trends in Analytical Chemistry, 2018, 103: 230.
[56] Hanf S, Keiner R, Yan D, et al. Analytical Chemistry, 2014, 86(11): 5278.
[57] Kanf S, Bogozi T, Keiner R, et al. Analytical Chemistry, 2015, 87(2): 982.
[58] Sieburg A, Schneider S, Yan D, et al. Analyst, 2018, 143(6): 1358.
[59] Knebl A, Domes R, Yan D, et al. Analytical Chemistry, 2019, 91(12): 7562.
[60] Yerolatsitis S, Yu F, McAughtrie S, et al. Journal of Biophotonics, 2019, 12(3): e201800239.
[61] Knebl A, Domes C, Domes R, et al. Analytical Chemistry, 2021, 93(30): 10546.
[62] Wang Jianxin, Chen Weigen, Wang Pinyi, et al. Opt. Express, 2021, 29(20): 32296.
[63] Tan Y, Jin W, Yang F, et al. Journal of Lightwave Technology, 2017, 35(14): 2887.
|
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|