光谱学与光谱分析 |
|
|
|
|
|
The Application of Piecewise Direct Standardization with SNV in Calibration Transfer of Raman Spectra |
HUANG Cheng-wei,DAI Lian-kui*,DONG Xue-feng |
State Key Lab of Industrial Control Technology, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract To implement calibration transfer between Raman spectrometers, an improved piecewise direct standardization (PDS) is proposed in the present paper. Standard normal variate (SNV) is firstly introduced to reduce the influence of spectral background and intensity corresponding to the master spectrometer and the slave spectrometer; then PDS algorithm is used to eliminate the differences between Raman spectra for a specific sample. Moreover, a new quantitative criterion, called transfer error rate, is proposed to evaluate the performance of calibration model transfer. This improved PDS is applied to Raman spectral analysis of gasoline. The result shows that the proposed algorithm not only needs a small quantity of transfer samples, but also obtains high transfer accuracy and strong model robustness.
|
Received: 2010-07-30
Accepted: 2010-10-28
|
|
Corresponding Authors:
DAI Lian-kui
E-mail: lkdai@iipc.zju.edu.cn
|
|
[1] Feudale R N,Woody N A,Tan H W,et al. Chemometrics and Intelligent Laboratory Systems,2002,64: 181. [2] Quang H N,Jouan M,Dao N Q. Analytical Chimica Acta,1999,379: 159. [3] CHU Xiao-li, YUAN Hong-fu, LU Wan-zhen(褚小立,袁洪福,陆婉珍). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2001, 21(6): 881. [4] ZHANG Xue-bo, FENG Yan-chun, HU Chang-qin(张学博,冯艳春,胡昌勤). Chinese Journal of Pharmaceutical Analysis(药物分析杂志),2009, 29(9): 1390. [5] Pereira C F,Pimentel M F,Galvo R K H,et al. Analytical Chimica Acta,2008,611: 41. [6] Wang Y D, Veltkamp D J, Kowalski B R. Anal. Chem.,1991,63: 2750. [7] Brring H K,Boelens H F M,DE Noord O E,et al. Applied Spectroscopy,2001,55(4): 458. [8] Tan H W, Brown S D. Journal of Chemometrics,2001,15(8): 647. [9] Olsen E F,Baustad C,Egelandsdal B,et al. Meat Science,2010,85(1): 1. [10] Mann C K,Vickers T J. Applied Spectroscopy,1999,53(7): 856. [11] Choquette S J, Etz E S, Hurst W S, et al. Applied Spectroscopy,2007,61(2): 117. [12] Etz E S,Choquette S J,Hurst W S. Microchimica Acta,2005,149(3-4): 175.
|
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|