|
|
|
|
|
|
Research Progress of the Real-Time Detection System of Bioaerosols Based on Fluorescence Method |
GUO He-qing1, 2, ZHANG Sheng-zi2*, LIU Xiao-meng2, JING Xu-feng1, WANG Hong-jun2 |
1. Institute of Optoelectronic Technology, China Jiliang University, Hangzhou 310018, China
2. Institute of Thermal Metrology, National Institute of Metrology, China, Beijing 100029, China
|
|
|
Abstract Bioaerosols are aerosols containing biological particles such as bacteria, fungi, pollen, etc. The spread of bioaerosols has a potential impact on human health and the atmospheric environment. In addition, bioaerosols are also used as the release mode of biological agents in military activities. Therefore, real-time detection of bioaerosols in the air, rapid identification of aerosols types, and determination of concentrations and dangerous levels of bioaerosols are important methods to reduce exposure to pathogenic bioaerosols, protect personnel and environmental safety, and prevent bio-terrorist attacks. Biological particles contain typical fluorophores such as tryptophan, tyrosine or riboflavin. The feature fluorescence spectrum can be obtained via laser-induced these biological substances, thus completing the detection and identification of biological aerosols. The real-time detection system of bioaerosols based on the fluorescence method offers significant technological advantages in identifying aerosols' biological and physical characteristics. The basic principles of measuring bioaerosols are briefly introduced. The research on the real-time detection system of bioaerosols is summarized in three aspects: the triggering method of the fluorescence excitation light source, the type of the fluorescence excitation light source and the signal acquisition system. Finally, the development direction of the real-time detection system of bioaerosols is discussed, which provides a reference for the subsequent research of the real-time detection system of bioaerosols.
|
Received: 2022-04-21
Accepted: 2022-07-28
|
|
Corresponding Authors:
ZHANG Sheng-zi
E-mail: zhangsz@nim.ac.cn
|
|
[1] Després V R, Huffman J A, Burrows S M, et al. Tellus Series B-Chemical & Physical Meteorology, 2012, 64(1): 15598.
[2] Li M X, Wang L, Qi W Z, et al. Micromachines, 2021, 12(7): 798.
[3] Ho J. Analytica Chimica Acta, 2002, 457(1): 125.
[4] Fennelly M J, Sewell G, Prentice M B, et al. Atmosphere, 2017, 9(1): 1.
[5] Hill S C, Pinnick R G, Nachman P, et al. Applied Optics. 1995, 34(30): 7149.
[6] Hairston P P, Ho J, Quant F R. Journal of Aerosol Science, 1997, 28(3): 471.
[7] Kasparian J, Hassler C, Ibelings B, et al. Scientific Reports, 2017, 7: 45476.
[8] Buteau S, Beckman B, Nadeau D, et al. Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XXI, 2020, 11416: 114160G.
[9] Pan Y L. Journal of Quantitative Spectroscopy & Radiative Transfer, 2015, 150: 12.
[10] Fröhlich-Nowoisky J, Kampf C J, Weber B, et al. Atmospheric Research, 2016, 182: 346.
[11] Pöhlker C, Huffman J A, Pöschl U, et al. Atmospheric Measurement Techniques, 2012, 5(1): 37.
[12] Saari S E, Putkiranta M J, Keskinen J. Atmospheric Environment, 2013, 71: 202.
[13] Albrecht H E, Borys M, Damaschke N, et al. Springer Berlin Heidelberg, 2003, 79.
[14] Wilson J C, Liu B Y H. Journal of Aerosol Science, 1980, 11(2): 139.
[15] Kopczynski K, Kwasny M, Mierczyk Z, et al. Proceedings of SPIE—Optical Security Systems, 2005, 5954: 595405.
[16] Pinnick R G, Hill S C, Nachman P, et al. Aerosol Science and Technology, 1995, 23(4): 653.
[17] Chen G, Nachman P, Pinnick R G, et al. Optics Letters, 1996, 21(16): 1307.
[18] Pan Y L, Holler S, Chang R K, et al. Optics Letters, 1999, 24(2): 116.
[19] Seaver M, Eversole J D, Hardgrove J J, et al. Aerosol Science & Technology, 1999, 30(2): 174.
[20] Choi K, Ha Y, Lee H K, et al. Instrumentation Science & Technology, 2014, 42(2): 200.
[21] Kaliszewski M, Wlodarski M, Mlynczak J, et al. Journal of Aerosol Science, 2016, 100: 14.
[22] Leskiewicz M, Kaliszewski M, Wlodarski M, et al. Atmospheric Measurement Techniques, 2018, 11(11): 6259.
[23] Zhang M, Klimach T, Ma N, et al. Environmental Science and Technology, 2019, 53(22): 13257.
[24] Sivaprakasam V, Huston A, Scotto C, et al. Optics Express, 2004, 12(19): 4457.
[25] Jonsson P, Wästerby P, Gradmark P, et al. Proceedings of SPIE—Chemical Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI, 2015, 9455: 945509.
[26] Sivaprakasam V, Lou J W, Currie M, et al. Journal of Quantitative Spectroscopy & Radiative Transfer, 2011, 112(10): 1511.
[27] Kiselev D, Bonacina L, Wolf J P. Optics Express, 2011, 19(24): 24516.
[28] Pan Y L, Boutou V, Chang R K, et al. Optics Letters, 2003, 28(18): 1707.
[29] Jeong Y S, Lee J M, Park J, et al. Instrumentation Science & Technology, 2020, 48(4): 417.
[30] Kaye P H, Hirst E, Foot V E, et al. Proceedings of SPIE—The International Society for Optical Engineering, 2004, 5617: 388.
[31] Kaye P H, Barton J E, Hirst E, et al. Applied Optics, 2000, 39(21): 3738.
[32] Foot V E, Clark J M, Baxter K L, et al. Proceedings of SPIE—The International Society for Optical Engineering, 2004, 5617: 292.
[33] Pan Y L, Cobler P, Rhodes S, et al. Review of Scientific Instruments, 2001, 72(3): 1831.
[34] Pan Y L, Hartings J, Pinnick R G, et al. Aerosol Science & Technology, 2003, 37(8): 628.
[35] Huang H C, Pan Y L, Hill S C, et al. Optics Express, 2008, 16(21): 16523.
[36] Kiselev D, Bonacina L, Wolf J P. Review of Scientific Instruments, 2013, 84(3): 033302.
[37] Sousa G, Gaulier G, Bonacina L, et al. Scientific Reports, 2016, 6: 33157.
[38] Sousa G, Kiselev D, Kasparian J, et al. Environmental Science and Pollution Research, 2017, 24(24): 19517.
[39] Davitt K, Song Y-K, Patterson W R, et al. Optics Express, 2005, 13(23): 9548.
[40] LIAN Yue, LIU Wen-qing, LU Jian-chun, et al(连 悦,刘文清,鹿建春,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2006, 26(2): 198.
[41] Taketani F, Kanaya Y, Nakamura T, et al. Journal of Aerosol Science, 2013, 58: 1.
[42] Saari S, Reponen T, Keskinen J. Aerosol Science and Technology, 2014, 48(4): 371.
[43] Ruske S, Topping D O, Foot V E, et al. Atmospheric Measurement Techniques, 2017, 10(2): 695.
[44] Lu C, Zhang P, Wang G, et al. Journal of Aerosol Science, 2018, 117: 24.
[45] Yoon S N, Lee J, Kim D, et al. Asian Journal of Atmospheric Environment, 2019, 13(3): 186.
[46] Kaye P, Stanley W R, Hirst E, et al. Optics Express, 2005, 13(10): 3583.
[47] Sivaprakasam V, Lin H B, Huston A L, et al. Optics Express, 2011, 19(7): 6191.
[48] Konemann T, Savage N, Klimach T, et al. Atmospheric Measurement Techniques, 2019, 12(2): 1337.
[49] Pan Y L, Pinnick R G, Hill S C, et al. Environmental Science & Technology, 2009, 43(2): 429.
[50] Pan Y L, Boutou V, Bottiger J R, et al. Aerosol Science & Technology, 2004, 38(6): 598.
[51] Robinson E S, Gao R S, Schwarz J P, et al. Atmospheric Measurement Techniques, 2017, 10(5): 1755.
[52] Crawford I, Topping D, Gallagher M, et al. Atmosphere, 2020, 11(10): 1039.
|
[1] |
ZHU Shao-hao1, SUN Xue-ping1, TAN Jing-ying1, YANG Dong-xu1, WANG Hai-xia2*, WANG Xiu-zhong1*. Study on a New Sensing Method of Colorimetric and Fluorescence Dual Modes for Pesticide Residue[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2785-2791. |
[2] |
OU Li-juan1*, LI Jing1, ZHANG Chao-qun1, LUO Jian-xin1, WEI Ji1, WANG Hai-bo2*, ZHANG Chun-yan1. Redox-Controlled Turn-on Fluorescence Sensor for H2O2 and Glucose Using DNA-Template Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(12): 3757-3761. |
[3] |
LIU Pan1, 2, DU Mi-fang1, LI Zhi-ya1, GAO Ling-qing1, 3, HAN Hua-yun4, ZHANG Xin-yao1, 3. Determination of Trace Tellurium Content in Steel by Hydride Generation Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3103-3108. |
[4] |
OU Li-juan, AN Xue-zhong, LUO Jian-xin, WANG Ling-yun, BO Heng, SUN Ai-ming, CHEN Lan-lan. High-Sensitive and Rapid Fluorescencet Detection of Hg2+ Based on Poly(adenine)-Templated Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 164-167. |
[5] |
GONG Ai-qin1*, JIN Dang-qin1, ZHU Xia-shi2. A Fluorescence Spectroscopic Study of the Interaction between Trelagliptin Succinate and Bovin Serum Albumine and Its Analytical Application[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 157-160. |
[6] |
MA Xue-hong1, SONG Bai-ling2, XIAO Wen-jun2, GENG Jing2, LI Xin-xia1*, CHEN Jian3. Study on Interaction between Alliin and Bovine and Hunman Serum Albumin with Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1826-1830. |
[7] |
ZHANG Qiu-ju, LIU Bao-sheng*, LI Gai-xia, HAN Rong, Lü Yun-kai . The Investigation on the Interaction of Colistin Sulfate with Bovine Serum Albumin with Resonance Light Scattering Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2879-2883. |
[8] |
ZHANG Li-hua1, Arkin IBURAIM2* . The Establishment of the Method of the Fiber Optic Chemical Sensor Synchronous Absorption-Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 755-758. |
[9] |
XIONG Chao1,2, GE Liang-quan1*, LIU Duan3, ZHANG Qing-xian1, GU Yi1, LUO Yao-yao1, ZHAO Jian-kun1 . Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(03): 838-841. |
[10] |
LIANG Ai-hui1, LI Yuan1, HUANG Shan-shan1, LUO Yang-he1, 2, WEN Gui-qing1, JIANG Zhi-liang1* . Fluorescence Determination of Trace Se with the Hydride-KI3-Rhodamine 6G System [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(05): 1306-1308. |
[11] |
WANG Ji-xun, GAO Xun*, LI Qi, ZHENG Yi-ni, LIN Jing-quan . Study of the Air Plasma Expansion Dynamics by Fluorescence Method [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(09): 2472-2475. |
[12] |
LI Yue-sheng, DU Ji-fu, SUN Shao-fa, ZHAO Long* . Investigation of Exogenous Stimulus Effect on the Interaction of CdSe/ZnS Quantum Dots/TiO2 Nanocomposites with Human Serum Albumin by Resonance Light Scattering[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(04): 1040-1044. |
[13] |
ZHOU Na1, 2, LUO He-dong2, LI Na1, 2, LI Yao-qun1* . Determination of Benzo(α)pyrene in Food with Microwave-Assisted Extraction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(03): 787-790. |
[14] |
WANG Yan-yan1, SHI Zhi-qiang2, ZHANG Biao2 . Determinatoin of Trace Mercury in Sludge Samples by Hydride Generation-Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(03): 826-828. |
[15] |
WANG Jing, XIAO Ya-ping*, LIANG Xiao-qing, SHAO Xian-hui, ZHANG Ke . Determination of Arsenic, Mercury and Selenium in Gynostemma Pentaphyllum and Rhizospheric Soil Samples Collected from Different Regions by Hydride Generation Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(03): 813-816. |
|
|
|
|