光谱学与光谱分析 |
|
|
|
|
|
Investigation of Exogenous Stimulus Effect on the Interaction of CdSe/ZnS Quantum Dots/TiO2 Nanocomposites with Human Serum Albumin by Resonance Light Scattering |
LI Yue-sheng, DU Ji-fu, SUN Shao-fa, ZHAO Long* |
Non-Power Nuclear Technology Collaborative Innovation Center, Hubei University of Science & Technology, Xianning 437100, China |
|
|
Abstract The interaction between CdSe/ZnS(quantum dots)/TiO2 nanocomposites and human serum albumin(HSA) was investigated by resonance light scattering (RLS) spectroscopic methods under approximate physiological conditions. Much important information of the interaction between CdSe/ZnS(Quantum Dots)/TiO2 nanocomposites and HSA was obtained by studying comprehensively the Exogenous influence factors of nanocomposites concentration, pH, NaCl concentration, reaction temperature, detection time, coexisting ions, surfactants, sequence of adding to the sample etc. It was showed that the new formation of complex system is likely to enhance the protein hydrophobic cavity and tend to focus the hydrophobic interface in aqueous solution, resulting in strengthening the intensity of resonance light scattering; Also it is very sensitive to the changes in the pH value in the system; The sensitivity of IRLS in system can be increased by the appropriate NaCl concentration; The value of IRLS in system would be changed with the change in the concentration of coexisting ions; The value of IRLS in system is basically stable when the reaction time reaches 5 min; The value of IRLS in system is not exactly the same with a surfactant, and strong electrostatic interaction has occurred between oppositely charged surfactant and nano composites; It is obvious that the value of IRLS in complex system is affected by the sequence of adding to sample; It has the incomplete monotonically increasing trend with the changes in temperature. The information is useful for providing theoretical supporting for the mechanism of interaction between nanomaterials and bio-macromolecule, and for understanding the biocompatibility and safety of nano-materials.
|
Received: 2013-06-17
Accepted: 2013-11-12
|
|
Corresponding Authors:
ZHAO Long
E-mail: ryuuchou@hotmail.com
|
|
[1] He X M, Carter D C. Nature, 1992, 358: 209. [2] Huang C Z, Lu W, Li Y F, et al. Anal. Chim. Acta, 2006, 556(2): 469. [3] Belatik A, Hotchandani S, Tajmir-Riahi H A, et al. J. Photochem. Photobio. B, 2013, 123: 41. [4] Agudelo D, Nafisi S, Tajmir-Riahi H A. J. Phys. Chem. B, 2013, 117: 6403. [5] Mandeville J S, Tajmir-Riahi H A. Biomacromolecules, 2010, 11: 465. [6] Bourassa P, Thomas T J, Tajmir-Riahi H A. Biomacromolecules, 2010, 11: 1507. [7] Bourassa P, Kanakis C D, Tarantilis P, et al. J. Phys. Chem. B, 2010, 114: 3348. [8] Charbonneau D M, Tajmir-Riahi H A. J. Phys. Chem. B., 2010, 114: 1148. [9] Xiao Q, Huang S, Liu Y, et al. Biochim. ET. Biophys. Acta, 2008, 1784: 1020. [10] Yu W W, Qu L H, Peng X G, et al. Chem. Mater., 2003, 15: 4300. [11] Qi Z D, Zhou B, Liu Y, et al. J. Photochem. Photobio. A: Chemistry, 2008, 193: 81. [12] Li Y S, Sun S F, Liu Y, et al. J. Molecular Structure, 2010, 968: 24. |
[1] |
GUO Jing-fang, LIU Li-li*, CHENG Wei-wei, XU Bao-cheng, ZHANG Xiao-dan, YU Ying. Effect of Interaction Between Catechin and Glycosylated Porcine
Hemoglobin on Its Structural and Functional Properties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3615-3621. |
[2] |
ZHANG Xiao-dan1, 2, LIU Li-li1*, YU Ying1, CHENG Wei-wei1, XU Bao-cheng1, HE Jia-liang1, CHEN Shu-xing1, 2. Activation of Epigallocatechin Gallate on Alcohol Dehydrogenase:
Multispectroscopy and Molecular Docking Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3622-3628. |
[3] |
YANG Jing1, LI Li1, LIANG Jian-dan1, HUANG Shan1, SU Wei1, WEI Ya-shu2, WEI Liang1*, XIAO Qi1*. Study on the Interaction Mechanism Between Thiosemicarbazide Aryl Ruthenium Complexes and Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2761-2767. |
[4] |
ZHANG Ye-li1, 2, CHENG Jian-wei3, DONG Xiao-ting2, BIAN Liu-jiao2*. Structural Insight Into Interaction Between Imipenem and Metal β-Lactamase SMB-1 by Spectroscopic Analysis and Molecular Docking[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2287-2293. |
[5] |
REN Li-lei, PENG Yu-ling, WANG Shu-jun*, ZHANG Cheng-gen, CHEN Yu, WANG Xin-tong, MENG Xiao-ning. Fluorescence Spectroscopy for Studies on the Interaction Between Three Metalloporphyrins With Human Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 806-813. |
[6] |
HOU Qian-yi1, 2, DONG Zhuang-zhuang1, 2, YUAN Hong-xia1, 2*, LI Qing-shan1, 2*. A Study of the Mechanism of Binding Between Quercetin and CAV-1 Based on Molecular Simulation, Bio-Layer Interferometry and
Multi-Spectroscopy Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 890-896. |
[7] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[8] |
ZHANG Meng-jun1, LIU Li-li1*, YANG Xie-li2, GUO Jing-fang1, WANG Hao-yang1. Multispectral Analysis of Interaction Between Catechins and Egg Yolk Immunoglobulin and the Change of Bacteriostasis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2297-2303. |
[9] |
LIU Jiang-qing1, YU Chang-hui2, 3, GUO Yuan2, 3, LEI Sheng-bin1*, ZHANG Zhen2, 3*. Interaction Between Dipalmityl Phosphatidylcholine and Vitamin B2
Studied by Second Harmonic Spectroscopy and Brewster Angle
Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1484-1489. |
[10] |
LÜ Jia-nan, LI Jun-sheng*, HUANG Guo-xia, YAN Liu-juan, MA Ji. Spectroscopic Analysis on the Interaction of Chrysene With Herring Sperm DNA and Its Influence Factors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 210-214. |
[11] |
ZHANG Chuan-ying1, PENG Xin1*, RAO Heng-jun2, QI Wei2, SU Rong-xin2, HE Zhi-min2. Spectroscopic Studies on the Interaction Between Salvianolic Acid B and Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1701-1707. |
[12] |
HU Jing-jing, TONG Chang-lun*. Study on the Interaction Between Carbon Quantum Dots and Human Serum Albumin by Spectroscopic Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1107-1113. |
[13] |
LUO Lin-lin1, 2, 3, NIU Jing-jing3, MO Bei-xin1, 2, LIN Dan-ying3, LIU Lin1, 2*. Advances in the Application of Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy (FRET-FLIM) Technique in Life Science Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1023-1031. |
[14] |
ZHANG Lu1, XU Liang1, TU Zong-cai1, 2*, ZHOU Qi-ming1, ZHOU Wen-na1. Mechanism of Isoquercitrin Inhibiting Advanced Glycation Products Formation Based on Fluorescence Spectroscopy Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3755-3760. |
[15] |
YE Jia-wen1, CHANG Jing-jing1*, GENG Yi-jia2, CUI Yuan1*, XU Shu-ping2, XU Wei-qing2, CHEN Qi-dan3. Detection of I- in Water by the Hg2+@CDs Fluorescent Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3489-3493. |
|
|
|
|