|
|
|
|
|
|
Advances in the Application of Förster Resonance Energy Transfer and Fluorescence Lifetime Imaging Microscopy (FRET-FLIM) Technique in Life Science Research |
LUO Lin-lin1, 2, 3, NIU Jing-jing3, MO Bei-xin1, 2, LIN Dan-ying3, LIU Lin1, 2* |
1. College of Life Sciences and Oceanography,Guangdong Provincial Key Laboratory for Plant Epigenetics,Shenzhen University,Shenzhen 518060,China
2. Longhua Bioindustry and Innovation Research Institute,Shenzhen University,Shenzhen 518060,China
3. College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China |
|
|
Abstract Cell is the basic unit of structure and biological activities of animals and plants. An important feature of cellular processes is that the biochemical components involved in it have spatiotemporally interacted with each other. However, it is difficult to evaluate molecular interactions in living cells using traditional biochemical methods (e. g., yeast two-hybrid system, pull-down system, etc. ). The rapid development of optical technology provides new genetic research tools for studying the spatiotemporal dynamics of biomolecules in living cells. FRET-FLIM (Förster resonance energy transfer-fluorescence lifetime imaging microscopy) technology has unique advantages in real-time detection and analysis of conformational changes and dynamic interactions of macromolecules in living cells, such as achieving real-time “visualization” study of living cells with the high spatial and temporal resolution, obtaining more reliable results with high sensitivity, and accomplishing simple and fast analysis program based on brief mathematical operations etc. This paper outlined the theoretical backgrounds of FRET-FLIM, and then summarized the advantages and disadvantages of FRET-FLIM technique compared with traditional methods for protein interaction studies. In addition, we emphasized the recent studies and applications of FRET-FLIM in protein interaction, cell biology, and disease diagnosis. Finally, this paper prospected the future research trend of FRET-FLIM in the field of life sciences and provided a comprehensive and systematic reference for related research in the structure and processes of living cells.
|
Received: 2020-03-30
Accepted: 2020-07-12
|
|
Corresponding Authors:
LIU Lin
E-mail: linliu@szu.edu.cn
|
|
[1] Amos W B, White J G. Biology of the Cell, 2003, 95(6): 335.
[2] Gunasinghe S D, Shiota T, Stubenrauch C J, et al. Cell Reports, 2018, 23(9): 2782.
[3] Soderstrom B, Badrutdinov A, Chan H, et al. Nature Communications, 2018, 9(1): 4323.
[4] Dumur T, Duncan S, Graumann K, et al. Nucleus, 2019, 10(1): 181.
[5] Komis G, Samajova O, Ovecka M, et al. Trends in Plant Science, 2015, 20(12): 834.
[6] Wang H. Molecular Plant, 2016, 9(5): 633.
[7] Bücherl C A, Bader A, Westphal A H, et al. Protoplasma, 2014, 251(2): 383.
[8] Dziuba D, Jurkiewicz P, Cebecauer M, et al. Angewandte Chemie, 2016, 128(1): 182.
[9] Meyer-Almes F J. Methods and Applications in Fluorescence, 2017, 5(4): 042002.
[10] LIU Chao, ZHOU Yan, WANG Xin-wei, et al(刘 超, 周 燕, 王新伟, 等). Laser & Optoelectronics Progress(激光与光电子学进展), 2011, 48(11): 111102.
[11] Forster T. Journal of Biomedical Optics, 2012, 17(1): 011002.
[12] Margineanu A, Chan J, Kelly D, et al. Scientific Reports, 2016, 6(1): 28186.
[13] Borst J W, Visser A J. Measurement Science and Technology, 2010, 21(10): 102002.
[14] LIU Xiong-bo, LIN Dan-ying, WU Qian-qian, et al(刘雄波, 林丹樱, 吴茜茜, 等). Acta Physica Sinica(物理学报), 2018, 67(17): 178701.
[15] Clegg R M. Fluorescence Imaging Spectroscopy and Microscopy(Wang X F, Herman B, editors). New York: Wiley, 1996. 179.
[16] Rios A F, Radoeva T, De Rybel B, et al. Methods in Molecular Biology, 2017, 1497: 135.
[17] Camborde L, Jauneau A, Brière C, et al. Nature Protocols, 2017, 12(9): 1933.
[18] Zhu X M, Fang C, Jia H, et al. Nanoscale, 2014, 6(19): 11462.
[19] Günther E, Klauß A, Nahuelpan M T, et al. Scientific Reports, 2019, 9: 19615.
[20] Ishikawa-Ankerhold H C, Ankerhold R, Drummen G P. Molecules, 2012, 17(4): 4047.
[21] Giraud G, Schulze H, Bachmann T T, et al. International Journal of Molecular Sciences, 2009, 10(4): 1930.
[22] Zhang Y, Chen Y, Yu J, et al. Medical Devices and Diagnostic Engineering, 2017, 4(1): 78.
[23] Laptenok S P, Snellenburg J J, Bucherl C A, et al. Methods in Molecular Biology, 2014, 1076: 481.
[24] Stirnweiss A, Hartig R, Gieseler S, et al. Science Signaling, 2013, 6(263): ra13.
[25] Fereidouni F, Esposito A, Blab G A, et al. Journal of Microscopy, 2011, 244(Pt3): 248.
[26] Grecco H E, Roda-Navarro P, Verveer P J. Optics Express, 2009, 17(8): 6493.
[27] LIN Dan-ying, LIU Xiao-chen, MA Wan-yun(林丹樱, 刘晓晨, 马万云). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(6): 1581.
[28] Bindels D S, Haarbosch L, Van Weeren L. Nature Methods, 2017, 14(1): 53.
[29] Hellman L M, Fried M G. Nature Protocol, 2007, 2(8): 1849.
[30] Ciruela F. Current Opinion in Biotechnology, 2008, 19(4): 338.
[31] Hayes S, Malacrida B, Kiely M, et al. Biochemical Society Transactions, 2016, 44(4): 994.
[32] Miller K E, Kim Y, Huh W K, et al. Journal of Molecular Biology, 2015, 427(11): 2039.
[33] Fujii Y, Yoshimura A, Kodama Y. Biotechniques, 2018, 64(4): 153.
[34] Singh R, Lee M O, Lee J E, et al. Plant Physiology, 2012, 160(1): 477.
[35] Wang C, He X, Li Y, et al. Molecular Plant Pathology, 2018, 19(7): 1624.
[36] Fan M, Wang M, Bai M Y. Science China-Life Sciences, 2016, 59(9): 889.
[37] Lin J S, Lai E M. Methods in Molecular Biology, 2017, 1615: 211.
[38] Long Y, Smet W, Cruz-Ramírez A, et al. Plant Cell, 2015, 27(4): 1185.
[39] Moreno-Risueno M A, Sozzani R, Yard?mc? G G, et al. Science, 2015, 350(6259): 426.
[40] Long Y, Stahl Y, Weidtkamp-Peters S, et al. Nature, 2017, 548(7665): 97.
[41] Yamaguchi N, Winter C M, Wu M F, et al. Arabidopsis Book, 2014, 12: e0170.
[42] Gagnon K T, Maxwell E S. Methods in Molecular Biology, 2011, 703: 275.
[43] Barnes C, Kanhere A. Methods in Molecular Biology, 2016, 1480: 99.
[44] Marchese D, De Groot N S, Lorenzo G N, et al. Wiley Interdiscip Rev RNA, 2016, 7(6): 793.
[45] Ramirez-Garcés D, Camborde L, Pel M J, et al. New Phytologist, 2016, 210(2): 602.
[46] Testard A, Da Silva D, Ormancey M, et al. Plant and Cell Physiology, 2016, 57(10): 2221.
[47] Stankovic N, Schloesser M, Joris M, et al. Plant Physiology, 2016, 170(2): 1000.
[48] Hutten S J, Hamers D S, Aan den Toorn M, et al. PLoS One, 2017, 12(1): e0169905.
[49] Xue Y, Xing J, Wan Y, et al. Molecular Plant, 2018, 11(6): 846.
[50] Ben-Yishay R, Mor A, Shraga A, et al. Journal of Cell Biology, 2019, 218(9): 2962.
[51] Osterlund E J, Hirmiz N, Tardif C, et al. Methods in Molecular Biology, 2019, 1877: 305.
[52] Lou J, Scipioni L, Wright B K, et al. PNAS, 2019, 116(15): 7323.
[53] Escouboue M, Camborde L, Jauneau A, et al. Methods in Molecular Biology, 2019, 1991: 69.
[54] LlèresD, Bailly A P, Perrin A, et al. Cell Reports, 2017, 18(7): 1791.
[55] Calleja V, Alcor D, Laguerre M, et al. PLoS Biology, 2007, 5(4): e95.
[56] Jaillais Y, Hothorn M, Belkhadir Y, et al. Genes & Development, 2011, 25(3): 232.
[57] Doll F, Keckeis P, Scheel P, et al. Macromolecular Bioscience, 2019, 20(1): e1900081.
[58] Boer D R, Freire-Rios A, van den Berg WA, et al. Cell, 2014, 156(3): 577.
[59] Panagopoulou M S, Wark A W, Birch D J S, et al. Journal of Extracellular Vesicles, 2020, 9(1): 1710020.
[60] Saari H, Lisitsyna E, Rautaniemi K, et al. Journal of Controlled Release, 2018, 284: 133.
[61] Trier S, Henriksen J R, Andresen T L. Soft Matter, 2011, 7(19): 9027.
[62] Sato Y T, Umezaki K, Sawada S, et al. Scientific Reports, 2016, 6(1): 21933.
[63] Jones D M, Padilla-Parra S. Sensors, 2016, 16(7): 950.
[64] Andres I C, Padilla-Parra S. Viruses, 2020, 12(2): 206.
[65] Marin M, Du Y, Giroud C, et al. Assay & Drug Development Technologies, 2015, 13(3): 155.
[66] Kouznetsova J, Sun W, Martinez-Romero C, et al. Emerging Microbes & Infections, 2014, 3(12): e84.
[67] Byrne R D, Veeriah S, Applebee C J, et al. Nucleus, 2014, 5(5): 441.
[68] Meshri S E, Dujardin D, Godet J. Journal of Molecular Biology, 2015, 427(6 Pt B): 1480.
[69] Henderson R K, Johnston N, Chen H, et al. Germany: IEEE 44th European Solid State Circuits Conference (ESSCIRC), 2018. 54.
[70] Leavesley S J, Rich T C. Cytometry Part A, 2016, 89(4): 325.
[71] Verboogen D R J, Mancha N G, Beest M T, et al. Elife, 2017, 6: e23525. |
[1] |
LI Jin-zhi1, LIU Chang-jin1, 4*, SHE Zhi-yu2, ZHOU Biao2, XIE Zhi-yong2, ZHANG Jun-bing3, JIANG Shen-hua2, 4*. Antiglycation Activity on LDL of Clove Essential Oil and the Interaction of Its Most Abundant Component—Eugenol With Bovine Serum Albumin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 324-332. |
[2] |
SHEN Zhuo-wei, LI Rui, WANG Yang, XU Xiao-guang, XIAO Zhen*. The Proceedings of Raman Spectroscopy in Cervical Cancer in Recent Five Years[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2213-2217. |
[3] |
CONG Jian-han1, LUO Yun-jing1*, QI Xiao-hua2, ZOU Ming-qiang2, KONG Chen-chen1. Sensitive Detection of Uric Acid Based on BSA Gold Nanoclusters by Fluorescence Energy Resonance Transfer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 483-489. |
[4] |
WANG Qian-qian, XIANGLI Wen-ting, TENG Geer, CUI Xu-tai, WEI Kai. Advance in Raman Spectroscopy for Pathological Diagnosis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1016-1022. |
[5] |
ZHANG Wen-yue1, HAO Wen-hui1, ZHAO Jing2, WANG Yu-cong1*. Label-Free Detection of MicroRNA Based on Fluorescence Resonance Energy Transfer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 131-135. |
[6] |
ZHU Jun, LI Ye-ping, ZOU Jin-shan, CHEN Fang-yuan, LIU Fu-ming, YAN Xing-rong, TAN Yu-xin, ZHAI Hao-ying*. Determination of Pefloxacin by the Fluorescence Resonance Energy Transfer Effect Between Carbon Dots-Eosin B[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(08): 2554-2560. |
[7] |
WANG Pan1, GUO Ai-yu1, CHANG Guan-xiao2, RAN Xia1, ZHANG Yu2*, GUO Li-jun1* . Monitoring the Redox States of Thioredoxin in Protein-Protein Interaction Using Intrinsic Fluorescence Probe [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(10): 2797-2801. |
[8] |
ZHANG Xiu-qing, PENG Jun, LING Jian*, LIU Chao-juan, CAO Qiu-e, DING Zhong-tao . Fluorescence Resonance Energy Transfer Detection of Cobalt Ions by Silver Triangular Nanoplates and Rhodamine 6G[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(04): 951-955. |
[9] |
WANG Xiao-mei1, YE Chao1, LI Chen-gui1, HU Yu-zhu1, 2* . Study on the Fluorescence Resonance Energy Transfer between CdTe QDs and Rhodamine B and Its Application to the Determination of Trace Amount of Copper in Flos Lonicerae Japonicae[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2011, 31(02): 448-451. |
[10] |
DENG Chu-yun, LI Jia-min, MA Wan-yun*. DNA Nanosensor Fluorescence Imaging Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2010, 30(01): 220-224. |
[11] |
LI Jin-gui1, ZHU Kui2, XU Fei2, JIANG Hai-yang2, DING Shuang-yang2* . Fluorescence Resonance Energy Transfer between Gentamycin and Water-Soluble CdTe QDs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29(11): 3070-3074. |
[12] |
CHEN Tong-sheng1,WANG Xiao-ping2,SUN Lei1,WANG Hui-ying1,WANG Long-xiang1. Fluorescence Analysis of Taxol-Induced Paraptosis-Like Independent of Caspase-3 Activation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(11): 2623-2627. |
[13] |
CHEN Tong-sheng1,WANG Xiao-ping2,WANG Zhi-ping3,WANG Long-xiang1,WANG Hui-ying1,XING Da1. Fluorescence Emission Analysis of Caspase-3 Activation Induced by Xiao-Ai-Ping (XAP) inside Living Human Lung Adenocarcinoma Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(06): 1327-1331. |
[14] |
ZHAO Zhi-min,XIN Yu-jun, WANG Le-xin, ZHU Wei-hua,ZHENG Min,GUO Xin. Measurement and Analysis of Absorption Spectrum of Human Blood[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2008, 28(01): 138-140. |
[15] |
LIU Bao-sheng, GAO Jing, LIU Zhi-chao, YU Li-na, YANG Da-cheng, YANG Geng-liang. Fluorescence Resonance Energy Transfer Quenching Method for Determination of Arsenic with Acridine Orange-Rhodamine B[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2006, 26(02): 306-308. |
|
|
|
|