光谱学与光谱分析 |
|
|
|
|
|
Determinatoin of Trace Mercury in Sludge Samples by Hydride Generation-Atomic Fluorescence Spectrometry |
WANG Yan-yan1, SHI Zhi-qiang2, ZHANG Biao2 |
1. College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China 2. Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China |
|
|
Abstract Due to the complex matrix characteristic of sludge samples, the research on three wet digestion systems and the conditions of reducing agent, and carrier flow was carried. The experiment conditions of HNO3-HClO4 wet systems, namely 5% HNO3 carrier flow, 0.1% NaBH4 reducing agent, and acidity medium of 5% HNO3+0.05% K2Cr2O7 mixed solution, etc. were finally determined to measure the trace mercury in sludge samples. This recommended method has many advantages, such as accurate and quick detection and simple operation. The determination limit is 0.06 μg·L-1, and the relative standard deviation for 11-time determination of the solution containing 4.0 μg·L-1 Hg is 2.0%. This method for trace mercury in sludge samples by hydride generation-fluorescence (HG-AFS) can be widely used.
|
Received: 2012-07-06
Accepted: 2012-10-15
|
|
Corresponding Authors:
WANG Yan-yan
E-mail: yy_wang320@163.com
|
|
[1] Bax D, Agterdenboa J, Worrell E, et al. Anal. Chim. Acta, 2002, 463: 177. [2] XIE Mei-qi, CUI Kun-yan, ZHANG Wei-hong, et al(谢美琪,崔昆燕,张卫红, 等). Journal of Instrumental Analysis(分析测试学报),2001,20(2):47. [3] NAN Hai-tao, ZENG Jie(南海涛, 曾 杰). Physical Testing and Chemical Analysis Part B:Chemical Analysis(理化检验-化学分册), 2003, 39(5):276. [4] HUANG Min-wen, YUAN Xing-hai, LIN Sui-yun, et al(黄敏文,苑星海,林穗云, 等). Chemical Analysis of Sample Handle(化学分析的样品处理). Beijing:Chemical Industry Press(北京: 化学工业出版社),2007. 38.
|
[1] |
YU Xin, ZHOU Wei*, XIE Dong-cai, XIAO Feng, LI Xin-yu. The Study of Digital Baseline Estimation in CVAFS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2392-2396. |
[2] |
LU Ze1, 2, XI Bei-dou3, TAI De-zhi1, 2, LU Liang-quan1, 2, SUN Xiao-jie1, 2, ZHANG Jun1, 2, ZHANG Hua1, 2*. Study on Spectral Characteristics of Dissolved Organic Matter in Composting With Different Conditioners and Leached Dewatered Sludge[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(07): 2120-2129. |
[3] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, YUE Yuan-bo2, HU Xue-qiang2, CHEN Yu2, LI Xiao-jia1, 2*. The Detection of Mercury in Solutions After Thermal Desorption-
Enrichment by Energy Dispersive X-Ray Fluorescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1117-1121. |
[4] |
JULDEZ Nurlan1,2,3, SHEN Jian1,2,3, LENG Xiao-ting3, CHAI Yi-di1,2,3, WANG Shi-feng3, HU Yuan3, CUI Hao-yue3, WU Jing1,2,3*. Study on Measurement of Mercury Ion in Water by Thiamine-Fluorescence Excitation-Emission Matrix[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1846-1851. |
[5] |
NI Zi-yue1, CHENG Da-wei2, LIU Ming-bo2, HU Xue-qiang2, LIAO Xue-liang2, YUE Yuan-bo2, LI Xiao-jia1,2, CHEN Ji-wen3. The Rapid Detection of Trace Mercury in Soil With EDXRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 734-738. |
[6] |
OU Li-juan, AN Xue-zhong, LUO Jian-xin, WANG Ling-yun, BO Heng, SUN Ai-ming, CHEN Lan-lan. High-Sensitive and Rapid Fluorescencet Detection of Hg2+ Based on Poly(adenine)-Templated Gold Nanoclusters[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 164-167. |
[7] |
LIN Hai-lan1, 2, ZHU Ri-long1*, YU Lei2, CHENG Yong-xia3, ZHU Rui-rui2, LIU Pei2, REN Zhan-hong3. Determination of Arsenic, Mercury, Selenium, Antimony and Bismuth in Soil and Sediments by Water Bath Digestion-Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1528-1533. |
[8] |
YANG Lei, LIN Bin-bin, ZHENG Qi-wei, WU Shu-lan, ZHENG Bing-yun, ZHU Zhi-fei, HU Wen-ying. Its Photochemical Recognition to Hg2+ and Preparation of Nitrogen and Sulfur-Codoped Carbon Dots by Sulfanilamide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(11): 3388-3394. |
[9] |
ZHAO Ming-yue1, 2, 3, CHENG Jun-qi1, 2, YANG Bing-cheng3, WANG Zheng1, 2*. Highly Sensitive Determination of Selenium, Arsenic and Mercury in Seawater by Hydride Generation Coupled with Solution Cathode Glow Discharge Optical Emission Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1359-1365. |
[10] |
ZHU Xi-yu1, 2, WANG Ruo-yu2, ZHOU Xiao-hong2*, TAN Ai-juan1*, WEN Xiao-gang3*. Functional Nucleic Acid Based Fluorescent Biosensing Method for Hg2+ Detection in Water Samples[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(11): 3447-3451. |
[11] |
LIN Xi1, LU Yi-song2, YANG Sheng-yuan1*, LIU Lu-qun1, LI Fei-fei1, HE Shun-zhen1. Visual Colorimetric Detection of Hg(Ⅱ) with Graphene Oxide Peroxidase-Like Activity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(10): 3188-3191. |
[12] |
HU Hua-ling1, 2, 3, LI Meng2, 3*, HE Xiao-song2, 3, XI Bei-dou2, 3, ZHANG Hui2, 3, LI Dan2, 3, HUANG Cai-hong2, 3, TAN Wen-bing2, 3. FTIR Spectral Characteristics of Rice Plant Growing in Mercury Contaminated Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2081-2085. |
[13] |
FAN Hua1, YAO Gao-yang2, LIU Wei3, XING Zi-hui4, SHI Jin-ming5, GAO Bai1*, CHEN Yang6. Experimental Study on the Treatment of Mercury Contained Soil by Thermal Analytical Low Temperature Plasma Based on Cold Atomic Absorption Spectrophotometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2279-2283. |
[14] |
ZHANG Cai-hong, ZHOU Guan-ming*, ZHANG Lu-tao, LUO Dan, YU Lu, GAO Yi. An Application to Quantitative Analysis of Hg(Ⅱ) with L-Cysteine Molecular Probe by Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 117-122. |
[15] |
LU Jian-ping, QIN Meng-lin, BU Jing-long, DENG Yang-hui,TONG Zhang-fa. Determination of Mercury in Rice with Dispersive Liquid-Liquid Microextraction and Atomic Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(11): 3606-3609. |
|
|
|
|