|
|
|
|
|
|
In-Situ Raman Spectroscopy Testing and Genesis of Graphite Inclusions in Alluvial Diamonds from Hunan |
MA Ying1, WANG Qi2, QIU Zhi-li1*, LU Tai-jin3, LI Liu-fen1, CHEN Hua3, DENG Xiao-qin1, BO Hao-nan1 |
1. Department of Earth Scicence, Sun Yat-sen University, Guangdong Key Laboratory of Geodynamic and Geological Hazards, Guangdong Key Laboratory of Geological Process and Mineral Resources Exploration, Guangzhou 510275, China
2. The Jewellery Inspection Laboratory of Guangzhou CIQ, Guangzhou 510275, China
3. National Gems & Jewelry Technology Administrative Center, Beijing 100013, China |
|
|
Abstract Graphite is one of the most common inclusion in diamond, it can be divided into protogenetic, syngenetic and epigenetic on the basis of sequence of graphite inclusion formation. The formation environment of the diamond and its late change are indicated by protogenetic/syngenetic and epigenetic graphite. In-situ microscopic laser Raman spectroscopy, we carried out on graphite inclusions in 13 gem-grade and semiprecious alluvial diamonds from the the Yuanjiang Basin in Hunan province(Yangtze Craton). The results showed that the graphite inclusions whether protogenetic/syngenetic or epigenetic Raman shift in position of the G band and D band toward high frequency region and Show low ordered structures and defects. Raman shift of the protogentic/syngenetic graphite G band range from 1 591 to 1 600 cm-1, the shift of the G band of epigenetic graphite is wide rang from 1 575 to 1 588 cm-1, it is thought that forming pressure for diamond in Yuanjiang Basin(Yangtze Craton)is lower and its crystallization pressure have great varying range. We calculated the pressure are rang from 4.01 to 5.88 GPa according to Raman shift of the protogentic/syngenetic graphite G band range. It is consistent with what result of calculation in Raman shift of the olivine in Hunan diamonds, the D band rang from 1 350~1 368 cm-1 andthe G band and D band intensity ofprotogenetic/syngeneticgraphite inclusions of Hunan diamonds between 0.36 to 0.82, it indicatethat those area diamondswereformed depth is shallow and may be formed in a lithospheric mantle containing abundant eclogite. In these cases, the diamonds may have formed diamond-graphite boundary and diamond stability field. The graphite inclusion Raman shift of diamond is one of effective approach to explore the formation environment of the diamond primary area.
|
Received: 2017-06-26
Accepted: 2017-11-10
|
|
Corresponding Authors:
QIU Zhi-li
E-mail: qiuzhili@mail.sysu.edu.cn
|
|
[1] Zedgenizov D A, Kagi H, Shatsky V S, et al. Mineralogical Magazine, 2004, 68(1): 61.
[2] Harris J W. Contributions to Mineralogy and Petrology, 1972, 35(1): 22.
[3] Khokhryakov A F, Nechaev D V. Russian Geology and Geophysics, 2015, 56(1-2): 232.
[4] Tuinstra F, Koenig J L. Journal of Chemical Physics, 1970, 53(3): 1126.
[5] XUE Jin-tao, LI Chun-yan, WU Chun-jie, et al(薛金涛, 李春燕, 吴纯洁, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(1): 120.
[6] Zerda T W, Xu W, Zerda A, et al. Carbon, 2000, 38(3): 355.
[7] Nechaev D V, Khokhryakov A F. Russian Geology and Geophysics, 2013, 54(4): 399.
[8] ZHAO Yong-nian, ZHANG Zhi-lin, CUI Qi-liang, et al(赵永年, 张志林, 崔启良, 等). Acta Scientiarum Naturalium Universitatis Jilinensis(吉林大学学报理学版), 1992, 4(4): 51.
[9] Nechaev D V, Khokhryakov A F. Geology of Ore Deposits, 2014, 56(2): 139.
[10] Sánchez G, Servat J, Gorostiza P, et al. Diamond & Related Materials, 1996, 5(6): 592.
[11] QIU Zhi-li, WANG Qi, QIN She-cai, et al(丘志力, 王 琦, 秦社彩, 等). Geotectonica et Metallogenia(大地构造与成矿学), 2014, 38(3): 590.
[12] Pal’Yanov Y N, Sokol A G, Sobolev N V. Geologiya I Geofizika, 2005, 46(12): 1290.
[13] Bródka A, Zerda T W, et al. Diamond & Related Materials, 2006, 15(11): 1818.
[14] GUO Jiu-gao, CHEN Feng, DENG Hua-xing, et al(郭九皋, 陈 丰, 邓华兴, 等). Science Bulletin(科学通报), 1989, 34(2): 130.
[15] YANG Ming-xing, PAN Zhao-lu(杨明星, 潘兆橹). Earth Science-Journal of China University of Geosciences(地球科学-中国地质大学学报), 2004, 29(1): 45.
[16] SUN Yuan, CHEN Hua, QIU Zhi-Li, et al(孙 媛, 陈 华, 丘志力, 等). Atca Petrologica et Mineralogica(岩石矿物学杂志), 2012, 31(2): 261.
[17] Schmetzer K. Gems & Gemology, 1999, 35(4): 186. |
[1] |
SHEN Da-wa1, ZHENG Fei2, WU Na1, 3, ZHANG Yi-chi1, WANG Zhi-liang1. Trend Analysis of Raman Application in Cultural Relics and Archaeological Research[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2657-2664. |
[2] |
YU Qiang1, CHEN You-peng1,2*, GUO Jin-song1,2. Screening of Antibiotic-Resistant Bacteria in Activated Sludge and Study of Their Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2788-2793. |
[3] |
OUYANG Shun-li1, ZHANG Ming-zhe1, HU Qing-cheng1, WEI Hai-yan1, WU Nan-nan2*. Hydrogen Bonding Effect on the Surface Tension and Viscosity of DMSO Aqueous Solutions Studied by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2778-2781. |
[4] |
HUANG Lin-sheng, WANG Fang, WENG Shi-zhuang*, PAN Fang-fang, LIANG Dong. Surface-Enhanced Raman Spectroscopy for Rapid and Accurate Detection of Fenitrothion Residue in Maize[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2782-2787. |
[5] |
FANG Xiao-qian, PENG Yan-kun, WANG Wen-xiu, ZHENG Xiao-chun, LI Yong-yu*, BU Xiao-pu. Rapid and Simultaneous Detection of Sodium Benzoate and Potassium Sorbate in Cocktail Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2794-2799. |
[6] |
LI Yan, PENG Yan-kun*, ZHAI Chen. A Raman Spectrum Detection Method for Quality of Cucumber Covered PE Plastic Wrap[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2800-2805. |
[7] |
FU Yun-peng, QI Ying, HU Xiao-peng, TONG Rui, FANG Guo-zhen*, WANG Shuo. Study on the Determination of Basic Orange Ⅱ and Acid Orange Ⅱ in Food by TLC-SERS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2419-2424. |
[8] |
LIN Xue-liang1, LIN Duo1, 2, QIU Su-fang3, GE Xiao-song1, PAN Jian-ji3, WU Qiong1, LIN Hui-jing1, HUANG Hao2*. Detection of Nasopharyngeal Carcinoma Based on Human Saliva Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2430-2434. |
[9] |
WANG Ning1, 2, WANG Chi1, BIAN Hai-yi2, WANG Jun3, WANG Peng2, BAI Peng-li3, YIN Huan-cai3, TIAN Yu-bing2, GAO Jing2*. The Identification Method of Blood by Applying Hilbert Transform to Extract Phase Information of Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2412-2418. |
[10] |
GAO Hao, ZHAI Ming-yang, SHANG Lin-wei, ZHAO Yuan, XU Hao, WANG Xiao, YIN Jian-hua*. Articular Cartilage Optical Clearing Research by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2425-2429. |
[11] |
ZHONG Hang, XU Jin-song, TAO Ran, DU Xiao-qing, CHEN Jun*, LIAO Jun-sheng*. Corrosion Resistance of Gold Surface Investigated by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2435-2440. |
[12] |
GONG Nan1, CAO Xian-wen1, SUN Cheng-lin1, FANG Wen-hui3, YUAN Ju-hui2, GAO Shu-qin1, LI Zuo-wei1, CHEN Wei2*, FU Hao-yang1*. Effects of External Fields on CC Atomic Vibrations Modulated by Electron Band Gap[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(08): 2462-2467. |
[13] |
LIU Lu-yao1, ZHANG Bing-jian1,2*, YANG Hong3, ZHANG Qiong3. The Analysis of the Colored Paintings from the Yanxi Hall in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2054-2063. |
[14] |
CHEN Sheng, ZHANG Xun, XU Feng*. Study on Cell Wall Deconstruction of Pinus Massoniana during Dilute Acid Pretreatment with Confocal Raman Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2136-2142. |
[15] |
HE Qing1, JIANG Qin1, XING Li-da2, 3, AN Yan-fei1, HOU Jie4, HU Yi5. Microstructure and Raman Spectra Characteristics of Dinosaur Eggs from Qiyunshan, Anhui Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2143-2148. |
|
|
|
|