|
|
|
|
|
|
Study on Alumina/Lanthanum Oxide X-Ray Diffraction and Raman Spectroscopy |
WANG Yi1, 2, LI Chang-rong1, 2*, ZHUANG Chang-ling1, 2 |
1. School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2. Guizhou Provincial Key Laboratory of Metallurgical Engineering and Process Energy Saving, Guiyang 550025, China |
|
|
Abstract When the size of aluminum oxide inclusions in steels is too large and the edges and corners are sharp, they can be regarded as the main source of cracks during the process of steel wire drawing, and these cracks substantially affect the performance of the steel. The refinement or removal of inclusions in steel is important. Since the amount of alloying elements added to steel is relatively small compared to that in the molten steel and there are errors during the experiments and analyses, the reaction of inclusions is magnified and studied by varying the proportions of rare earth lanthanum oxide powder and alumina at a high temperature of 1 600 ℃. The amount of powder that is added affects the phase change and size of the inclusions. A high-temperature box furnace is set to increase the temperature, keep warm and cool, and X-ray diffraction and Raman spectrometry are used to analyze the specific changes of lanthanum aluminum oxide. The results show that with increasing amounts of La2O3, the LaAl11O18 phase is formed first, followed by the LaAl11O18 and LaAlO3 phases. As the peak intensity decreases, the full width at half maximum increases and the grain size decreases. Then, the characteristic peak intensity of LaAl11O18 disappears, leaving only a decreased amount of the LaAlO3 phase, and no new phase is formed. Combined with the mathematical model for the average grain size of HW, R2 for samples 1#, 2#, 3# and 4# is calculated to be 0.990 25, 0.962 59, 0.987 1, and 0.989 76, and the grain sizes are 6.08, 2.88, 7.67, and 4.75 μm, respectively. Sample 2# has the smallest grain size herein, and sample 3# has the largest grain size herein, indicating that an appropriate ratio of lanthanum oxide and aluminum oxide can promote nucleation and reduce the grain size. Through Raman spectrometry, it is observed that with a decrease in the Al2O3 ratio, the Raman characteristic peak at 4 385 cm-1 disappears. When these results are combined with those from XRD, it is determined that the LaAl11O18 phase is present. Samples 3# and 4# have characteristic Raman peaks from 3 564~3642 and 4 461~5 554 cm-1, respectively. Upon combining the Raman peaks and XRD pattern for sample 2#, a new LaAlO3 phase is generated. The different ratios of the samples have little effect on the Raman peak intensity, and no new characteristic peaks appear. By enlarging the materials in steels that need targeted research, the evolution process of the modification of alumina powder after the addition of lanthanum oxide powder is analyzed. The research results can reference solving the problem of alumina inclusion modification during the actual steelmaking process.
|
Received: 2020-07-31
Accepted: 2020-11-02
|
|
Corresponding Authors:
LI Chang-rong
E-mail: cr263@163.com
|
|
[1] Chen C Y, Jiang Z H, Li Y, et al. ISIJ International, 2020, 60(4): 617.
[2] Somers A E, Peng Y, Chong A L, et al. Corrosion Engineering Science and Technology, 2020, 55(4): 311.
[3] Huang M, Wang Y, Chu C H, et al. Ceramics International, 2017, 43(8): 6397.
[4] Asgharzadeh H, Simchi A. Materials Science & Engineering A, 2005, 403(1-2): 290.
[5] Liu H L, Liu C J, Jiang M F. Materials & Design, 2012, 33(Jan.): 306.
[6] Xia Y Q, Liu W M, Yu L G, et al. Materials Science and Engineering A, 2003, 354(1-2): 17.
[7] Wei W Z, Wu K M, Zhang X, et al. Journal of Materials Research and Technology, 2020, 9(2): 1412.
[8] Heaney P J, Qxman M J, Chen S A. American Mineralogist,2020, 105(5): 652.
[9] Halder N C, Wagner C N J. Journal of Chemical Physics. 1967, 47(11): 4385.
[10] YUAN Jing, SHEN Jia-lin, LIU Jian-kun, et al(袁 静,沈加林,刘建坤,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(2): 582. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|