|
|
|
|
|
|
Effects of Process Parameters on Double Absorption Resonance Peaks of Au Nanoparticles |
DOU Xin-yi, ZHANG Can, ZHANG Jie* |
Key Laboratory of Optoelectronic Technology & System (Chongqing University),Education of Ministry, Chongqing 400044,China |
|
|
Abstract Surface-enhanced Raman scattering (SERS) largely compensates for the shortcoming of the weak intensity of Raman scattering and quickly becomes a research hotspot for researchers. It is widely used in food safety, environmental pollution, drug and explosive detection and other fields. Due to nanotechnology’s development, the current research on SERS mainly focuses on the preparation of metal nanoparticle substrates. The type, size, and morphology of metal nanoparticles all affect the SERS enhancement and absorption peak positions. It is necessary to optimize the process of metal nanostructures. In particular, it is necessary to combine the structure of the metal nanoparticle and its corresponding excitation light wavelength to obtain a better enhancement effect. A study of metal nanoparticles with double resonance absorption peaks was conducted to get the relationship between SERS enhancement and absorption peaks. Firstly, through FDTD Solutions, the local surface plasmon resonance peaks of gold nanoparticles with different diameters, gold nanorods with different aspect ratios and distributions were simulated. We found that when Au nanoparticles’ theoretical diameter is about 50 nm and the theoretical aspect ratio of Au nanorods is about 3.5~4.5, the absorption peaks are distributed near 532 and 785 nm, respectively, which meets the multi-band excitation light Raman enhancement conditions. For the polarization direction of the excitation light, when the light polarization direction is along the long axis direction of Au nanorods, the absorption peak is near 785 nm, and when the light polarization direction is along the short axis of Au nanorods, the absorption peak is near 532 nm. A double-absorption SERS substrate that can be used for excitation light of various wavelengths was prepared by the seed growth method. In order to control the forming rate of Au nanorods, the process parameters were optimized, including the silver nitrate(5, 10, 20, 30, 40 μL), the hydrochloric acid (0.1, 0.2 mL) and the growth time (15, 17, 21, 23 h). Double-absorption resonance peaks containing Au nanoparticles and Au nanorods were successfully obtained. Finally, using this sample as the substrate and Rhodamine 6G(R6G) as the probe molecule, the SERS characterization of the excitation light at 532, 633 and 785 nm was tested, achieving the multiple wavelength SERS detection with a concentration of 10-7 mol·L-1 of R6G, and the enhancement factor is ~105.
|
Received: 2020-04-10
Accepted: 2020-09-12
|
|
Corresponding Authors:
ZHANG Jie
E-mail: zhangjie@cqu.edu.cn
|
|
[1] Fleischmann M, Hendra P J, Mcquillan A J. Chemical Physics Letters, 1974, 26(2): 163.
[2] Kneipp K, Wang Y, Kneipp H, et al. Physical Review Letters, 1997, 78(9): 1667.
[3] Mccall S L, Platzman P M, Wolff P A. Physics Letters A, 1980, 77(5): 381.
[4] George C S, Matthew A Y, Richard P V D. Electromagnetic Mechanism of SERS. Germany: Springer, 2006, 103: 19.
[5] Willets K A, Van Duyne R P. Annual Review of Physical Chemistry, 2007, 58(1): 267.
[6] Zhang J, Zhang X, Lai C, et al. Optics Express, 2014, 22(18): 21157.
[7] Zhang J, Fan T, Zhang X, et al. Applied Optics, 2014, 53(6): 1159.
[8] Gong T, Zhu Y, Zhang J, et al. Carbon, 2015, 87: 385.
[9] Jana N R, Gearheart L, Murphy C J. Langmuir, 2001, 17(22): 6782.
[10] Orendorff C J, Gearheart L, Jana N R, et al. Physical Chemistry Chemical Physics, 2006, 8(1): 165.
[11] Zweifel D A, Wei A. Chemistry of Materials, 2005, 17(16): 4256.
[12] Suzuki T, Kitahama Y, Matsuura Y, et al. Applied Spectroscopy, 2012, 66(9): 1022.
[13] Le Ru E C, Blackie E, Meyer M, et al. Journal of Physical Chemistry C, 2007, 111(37): 13794.
[14] Fateixa S, Nogueira H I S, Trindade T. Physical Chemistry Chemical Physics, 2015, 17(33): 21046.
[15] Haynes C L, Mcfarland A D, Duyne R P V. Analytical Chemistry, 2005, 77(17): 338. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|