|
|
|
|
|
|
Baseline Correction Algorithm for Raman Spectroscopy Based on Adaptive Window Spline Fitting |
LIU Long1, FAN Xian-guang1, 2*, KANG Zhe-ming1, WU Yi1, WANG Xin1, 2* |
1. Department of Instrumental and Electrical Engineering, School of Aerospace Engineering, Xiamen University, Xiamen 361005, China
2. Fujian Key Laboratory of Universities and Colleges for Transducer Technology, Xiamen 361005, China |
|
|
Abstract Raman spectroscopy is a non-destructive and rapid detection technology that can provide qualitative and quantitative information of the material. Therefore, it has been widely used in many fields such as medicine and chemical industry. However, the Raman spectrum suffers from the baseline drift due to the background fluorescence of the sample. Moreover, it has a serious impact on the identification of characteristic peaks of Raman spectra and the Raman imaging. At present, there are two methods to solve this problem, that is, improve the experimental methods and numerical processing. The improve the experimental methods include polarization modulation method and high frequency modulation method. However, they suffer from the disadvantages of complicated experimental equipment and difficult detection technology. The numerical processing includes polynomial fitting and wavelet transform. However, it is prone to suffer from the over and under-fitting. In order to solve this problem, we propose the baseline correction algorithm for Raman spectroscopy based on adaptive window spline fitting, which based on the existing equipment and the traditional baseline correction algorithm. Firstly, the optimal search interval of the trough value is obtained based on the peak recognition algorithm and the initial search step, and then the trough recognition algorithm is used to complete the fitting of the trough curve. Secondly, the peak position of the trough curve is obtained based on the optimal search interval and the peak recognition algorithm. Then, the adaptive rectangular window is symmetrically added at this position, in order to delete the peak, and fitting the trough curve. Thirdly, the fitting trough curve is compared with the original Raman spectrum, point by point, and taking the smaller value to fit a new trough curve. Finally, the operation above will continue until the width of the adaptive window is lower than the threshold. Afterwards, the baseline fitting of the Raman spectrum is completed. And then the baseline correction of the sample is obtained based on our algorithm and the traditional methods. It can be seen that our algorithm can effectively eliminate the baseline drift, and some weaker Raman characteristic peaks can be better remaining. Simultaneously, the over and under-fitting is avoided, and the result of baseline correction is good. Therefore, it provides reliable information on the further analysis of the Raman spectrum and the realization of the Raman imaging.
|
Received: 2019-12-02
Accepted: 2020-04-08
|
|
Corresponding Authors:
FAN Xian-guang, WANG Xin
E-mail: xinwang@xmu.edu.cn; fanxg@xmu.edu.cn
|
|
[1] Chalmers J M, Uriffiths Peter R. Handbook of Vibrational Spectroscopy (Vol 1-5). Wiley, 2003.
[2] Christoph Krafft, Gerald Steiner, Claudia Beleites, et al. Journal of Biophotonics, 2009, 2: 13.
[3] HU Xue-tao, SHI Ji-yong, LI Yan-xiao, et al(胡雪桃,石吉勇,李艳肖,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2019, 39(9): 2901.
[4] Arguello C A, Mendes G F, Leite R C. Applied Optics, 1974, 13(8): 1731.
[5] Bright F V, Hieftje G M. Applied Spectroscopy, 1986, 40(5): 583.
[6] Yaney P P. J. Opt. Soc. Am., 1972, 62(11): 1297.
[7] Huang Jie, Shi Tielin, Gong Bo, et al. Applied Spectroscopy, 2018, 72(11): 1632.
[8] Rehman S U, Alkanhal M A S. IET Microwaves Antennas & Propagation, 2019, 13(15): 2693.
[9] Gallo Crescenzio, Capozzi Vito, Lasalvia Maria, et al. Vibrational Spectroscopy, 2016, 83: 132.
[10] ZHU Gao-feng, ZHU Hong-qiu, QIAN Hao, et al(朱高峰, 朱红求, 钱 灏, 等). Chinese Journal of Lasers(中国激光), 2018, 46(2): 211001.
[11] Gonzalez-Vidal J J, Perez-Pueyo R, Soneira M J. Journal of Raman Spectroscopy, 2017, 48(6): 878.
[12] Bertolazzi Enrico,Bevilacqua Paolo, Frego Marco. Mathematics and Computers in Simulation, 2020, 176: 57.
[13] Chambers S D, Choi T, Park S J, et al. Journal of Geophysical Research-Atmospheres, 2017, 122(24): 13525.
[14] Ning X R, Selesnick I W, Duval L. Chemometrics and Intelligent Laboratory Systems, 2014, 139: 156. |
[1] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[2] |
WANG Fang-yuan1, 2, HAN Sen1, 2, YE Song1, 2, YIN Shan1, 2, LI Shu1, 2, WANG Xin-qiang1, 2*. A DFT Method to Study the Structure and Raman Spectra of Lignin
Monomer and Dimer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 76-81. |
[3] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[4] |
WANG Xin-qiang1, 3, CHU Pei-zhu1, 3, XIONG Wei2, 4, YE Song1, 3, GAN Yong-ying1, 3, ZHANG Wen-tao1, 3, LI Shu1, 3, WANG Fang-yuan1, 3*. Study on Monomer Simulation of Cellulose Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 164-168. |
[5] |
WANG Lan-hua1, 2, CHEN Yi-lin1*, FU Xue-hai1, JIAN Kuo3, YANG Tian-yu1, 2, ZHANG Bo1, 4, HONG Yong1, WANG Wen-feng1. Comparative Study on Maceral Composition and Raman Spectroscopy of Jet From Fushun City, Liaoning Province and Jimsar County, Xinjiang Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 292-300. |
[6] |
LI Wei1, TAN Feng2*, ZHANG Wei1, GAO Lu-si3, LI Jin-shan4. Application of Improved Random Frog Algorithm in Fast Identification of Soybean Varieties[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3763-3769. |
[7] |
WANG Zhi-qiang1, CHENG Yan-xin1, ZHANG Rui-ting1, MA Lin1, GAO Peng1, LIN Ke1, 2*. Rapid Detection and Analysis of Chinese Liquor Quality by Raman
Spectroscopy Combined With Fluorescence Background[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3770-3774. |
[8] |
LIU Hao-dong1, 2, JIANG Xi-quan1, 2, NIU Hao1, 2, LIU Yu-bo1, LI Hui2, LIU Yuan2, Wei Zhang2, LI Lu-yan1, CHEN Ting1,ZHAO Yan-jie1*,NI Jia-sheng2*. Quantitative Analysis of Ethanol Based on Laser Raman Spectroscopy Normalization Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3820-3825. |
[9] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[10] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[11] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[12] |
ZHU Hua-dong1, 2, 3, ZHANG Si-qi1, 2, 3, TANG Chun-jie1, 2, 3. Research and Application of On-Line Analysis of CO2 and H2S in Natural Gas Feed Gas by Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3551-3558. |
[13] |
LIU Jia-ru1, SHEN Gui-yun2, HE Jian-bin2, GUO Hong1*. Research on Materials and Technology of Pingyuan Princess Tomb of Liao Dynasty[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3469-3474. |
[14] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[15] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
|
|
|
|