|
|
|
|
|
|
Research Progress of Multi-Component Gas Detection by Photoacoustic Spectroscopy |
WANG Qi, WANG Shi-chao, LIU Tai-yu, CHEN Zi-qiang |
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China |
|
|
Abstract Photoacoustic spectroscopy gas detection technology is an important technology to realize trace gas detection by using photoacoustic effect. It has the advantages of high sensitivity, high selectivity, zero background signal and real-time online monitoring. It plays a vital role in the fields of environmental monitoring, mining and metallurgy, energy and electricity, medical and health care and so on. Considering the complexity of gas detection application environment, the actual detection environment is often the simultaneous existence of multiple component gases, and the content of each component gas needs to be monitored. At this time, the technology of simultaneous detection of multi-component gases is particularly important. This paper firstly introduces the basic principle and characteristics of photoacoustic spectroscopy gas detection technology and expounds on the application of photoacoustic spectroscopy technology with optical multiplexing method as the core in multi-component gas detection mainly from the perspective of the light source and photoacoustic cell, and analyzes the characteristics of quartz enhanced photoacoustic spectroscopy technology and its application in multi-component gas detection. Finally, the development trend of multi-component gas detection based on photoacoustic spectroscopy is summarized and prospected.
|
Received: 2020-11-05
Accepted: 2021-03-08
|
|
|
[1] Cao Y, Sanchez N P, Jiang W, et al. Optics Express, 2015, 23(3): 2121.
[2] LAI Wei, QIAN Jin, YUAN Zong(赖 薇, 钱 进, 原 宗). Industrial Safety and Environmental Protection(工业安全与环保), 2007, 33(5): 37.
[3] Liu T, Wei Y, Song G, et al. Measurement, 2018, 124: 211.
[4] Duval M. IEEE Electrical Insulation Magazine, 2002, 18(3): 8.
[5] Navas M J, Jiménez A M, Asuero A G. Clinica Chimica Acta, 2012, 413(15-16): 1171.
[6] Wang C, Sahay P. Sensors, 2009, 9(10): 8230.
[7] SHI Ming-kun, HU Bing, YING Hua-shan, et al(史明坤, 胡 兵, 应花山,等). Laser Technology(激光技术), 2016,(3): 426.
[8] Webber M E, Pushkarsky M, Patel C K N. Journal of Applied Physics, 2005, 97(11): 113101.
[9] Dennis Baldocchi, Markus Reichstein, Dario Papale, et al. Eos Transactions American Geophysical Union, 2012, 93(23): 217.
[10] SUN Lin, LU Qi-rong, HUANG Yuan-yuan, et al(孙 林, 陆绮荣, 黄媛媛, 等). Process Automation Instrumentation(自动化仪表), 2012, 33(3): 15.
[11] Camilli G, Littlejohn L G, Wooldridge W A. Transactions of the American Institute of Electrical Engineers, 1959, 78(4): 1779.
[12] Godina R, Rodrigues E M G, Matias J C O, et al. Energies, 2015, 8(10): 12147.
[13] LI Wen-wen, DUAN Yi-xiang(李雯雯, 段忆翔). Progress in Chemistry(化学进展), 2015,(4): 321.
[14] Bell A G. American Journal of Science, 1880, s3-20(118): 305.
[15] Rontgen W C. Philosophical Magazine, 1881, 11(68): 308.
[16] Tyndall J. Proceedings of the Royal Society of London, 1881, 31(206-211): 307.
[17] Viengerov M L. Dokl. Akad. Nauk SSSR,1938, 19: 687.
[18] Luft K F. Tech. Phys.,1943, 24: 97.
[19] Kerr E L, Atwood J G. Applied Optics, 1968, 7(5): 915.
[20] Kreuzer L B. Journal of Applied Physics, 1971, 42(7): 2934.
[21] Wilcken K, Kauppinen J. Applied Spectroscopy, 2003, 57(9): 1087.
[22] Zoltán Bozóki, Andrea Pogány, Gábor Szabó. Applied Spectroscopy Reviews, 2011, 46(1): 1.
[23] WU Jun, TIAN Xue-hang(吴 军, 田学航). Electrical Engineering(电气技术), 2013,(12): 65.
[24] Okamura K, Ishiji T, Iwaki M, et al. Surface & Coatings Technology, 2007, 201(19-20): 8116.
[25] Liu J T C, Jeffries J B, Hanson R K. Applied Physics B, 2004, 78(3-4): 503.
[26] WANG Shu-tao, WANG Chang-bing, PAN Zhao, et al(王书涛, 王昌冰, 潘 钊,等). Optoelectronic Engineering(光电工程), 2017, 44(9): 862.
[27] ZHANG Xiao-jun, ZHANG Yong-gang(张晓钧, 张永刚). Semiconductor Optpelectronics(半导体光电), 2009, 30(3): 326.
[28] Kuusela T, Peura J, Matveev B A, et al. Vibrational Spectroscopy, 2009, 51(2): 289.
[29] Gong Z, Chen K, Yang Y, et al. Sensors and Actuators B: Chemical, 2018, 260(MAY): 357.
[30] Bijnen F G C, Reuss J, Harren F J M. Rev. Sci. Instrum., 1996, 67(8): 2914.
[31] NäGele M, Sigrist M W. Applied Physics B, 2000, 70(6): 895.
[32] Marinov D, Sigrist M W. IEEE Conference on Lasers & Electro-Optics, 2003, 2(7): 774.
[33] Webber M E, Pushkarsky M B, Patel C K N. Diode Lasers and Applications in Atmospheric Sensing. Pranalytica, Inc. 1101 Colorado Ave. Santa Monica, CA 90401, USA, 2002.
[34] LIU Shan-zheng, ZHANG Wang, YU Qing-xu(刘善峥, 张 望, 于清旭). Chinese Journal of Lasers(中国激光), 2009,(4): 964.
[35] Webber M E, Pushkarsky M, Patel C K N. Applied Optics, 2003, 42(12): 2119.
[36] CHEN Wei-gen, ZHOU Heng-yi, HUANG Hui-xian, et al(陈伟根, 周恒逸, 黄会贤, 等). Chinese Journal of Scientific Instrument(仪器仪表学报), 2010, 31(3): 665.
[37] Wang J, Zhang W, Li L, et al. Applied Physics B, 2011, 103(2): 263.
[38] Wang J, Zhang W, Liang L, et al. Sensors and Actuators B: Chemical, 2011, 160(1): 1268.
[39] Mcnaghten E D, Grant K A, Parkes A M, et al. Applied Physics B, 2012, 107(3): 861.
[40] Faist J, Capasso F, Sivco D L, et al. Science, 1994, 264(5158): 553.
[41] Paldus B A, Spence T G, Zare R N, et al. Optics Letters, 1999, 24(3): 178.
[42] Mukherjee A, Prasanna M, Lane M, et al. Applied Optics, 2008, 47(27): 4884.
[43] Nosaka Y, Tokunaga E. Applied Optics, 2007, 46(29): 7267.
[44] CHENG Gang, CAO Ya-nan, TIAN Xing, et al(程 刚, 曹亚南, 田 兴, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析). 2020, 40(8): 2345.
[45] Besson J P, Stéphane Schilt, Luc Thévenaz. Spectrochimica Acta Part A: Molecular & Biomolecular Spectroscopy, 2006, 63(5): 899.
[46] Liu K, Mei J, Zhang W, et al. Sensors & Actuators B: Chemical, 2017, 251: 632.
[47] Wang Q, Wang J, Li L, et al. Sensors & Actuators B: Chemical, 2011, 153(1): 214.
[48] Koskinen V, Fonsen J, Roth K, et al. Vibrational Spectroscopy, 2008, 48(1): 16.
[49] Chen K, Yu Z, Yu Q, et al. Optics Letters, 2018, 43(14): 3417.
[50] Liu K, Cao Y, Wang G, et al. Sensors & Actuators B: Chemical, 2018, 277: 571.
[51] Kosterev A A, Bakhirkin Y A, Curl R F, et al. Optics Letters, 2002, 27(21): 1902.
[52] Weidmann D, Kosterev A A, Tittel F K, et al. Optics Letters, 2004, 29(16): 1837.
[53] Liu K, Guo X Y, Yi H M, et al. Optics Letters, 2009, 34(10): 1594.
[54] Borri S, Galli I, Mazzotti D, et al. Appl. Phys. Lett., 2014, 104(9): 091114.
[55] Ma Y, He Y, Zhang L, et al. Applied Physics Letters, 2017, 110(3): 031107.
[56] Dong L, Lewicki R, Liu K, et al. Applied Physics B, 2012, 107(2): 275.
[57] Ma Y, Lewicki R, Razeghi M, et al. Optics Express, 2013, 21(1): 1008.
[58] Wu H, Dong L, Liu X, et al. Sensors, 2015, 15(10): 26743.
[59] Patimisco P, Sampaolo A, Dong L, et al. Sensors and Actuators, B: 2016, 227(may): 539.
[60] Zhang Q, Chang J, Cong Z, et al. IEEE Photonics Journal, 2018, 10(6): 6804308.
[61] Wu H, Yin X, Dong L, et al. Appl. Phys. Lett., 2017, 110(12): 121104.
[62] Elefante A, Giglio M, Sampaolo A, et al. Analytical Chemistry, 2019, 91(20): 12866. |
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[3] |
FU Wen-xiang, DONG Li-qiang, YANG Liu*. Research Progress on Detection of Chemical Warfare Agent Simulants and Toxic Gases by Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3653-3658. |
[4] |
CHENG Gang1, CAO Ya-nan1, TIAN Xing1, CAO Yuan2, LIU Kun2. Simulation of Airflow Performance and Parameter Optimization of
Photoacoustic Cell Based on Orthogonal Test[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3899-3905. |
[5] |
CHEN Tu-nan1, 2, LI Kang1, QIU Zong-jia1, HAN Dong1, 2, ZHANG Guo-qiang1, 2*. Simulation Analysis and Experiment Verification of Insulating Material-Based Photoacoustic Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2922-2927. |
[6] |
JIN Hua-wei1, 2, 3, WANG Hao-wei1, 2, LUO Ping1, 2, FANG Lei1, 2. Simulation Design and Performance Analysis of Two-Stage Buffer
Photoacoustic Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2375-2380. |
[7] |
LI Zhen-gang1, 2, SI Gan-shang1, 2, NING Zhi-qiang1, 2, LIU Jia-xiang1, FANG Yong-hua1, 2*, CHENG Zhen1, 2, SI Bei-bei1, 2, YANG Chang-ping1, 2. Research on Long Optical Path and Resonant Carbon Dioxide Gas
Photoacoustic Sensor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 43-49. |
[8] |
CHEN Yang, DAI Jing-min*, WANG Zhen-tao, YANG Zong-ju. A Near-Infrared TDLAS Online Detection Device for Dissolved Gas in Transformer Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3712-3716. |
[9] |
REN Zhong1, 2*, LIU Tao1, LIU Guo-dong1, 2. Classification and Identification of Real or Fake Blood Based on OPO Pulsed Laser Induced Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2734-2741. |
[10] |
WAN Liu-jie1, 2, ZHEN Chao3, QIU Zong-jia1, LI Kang1, MA Feng-xiang3, HAN Dong1, 2, ZHANG Guo-qiang1, 2*. Research of High Precision Photoacoustic Second Harmonic Detection Technology Based on FFT Filter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 2996-3001. |
[11] |
CHEN Jie1, 2, 3, QIAN Xian-mei1, 3, LIU Qiang1, 3*, ZHENG Jian-jie1, 2, 3, ZHU Wen-yue1, 3, LI Xue-bin1, 3. Research on Optical Absorption Characteristics of Atmospheric Aerosols at 1 064 nm Wavelength[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 2989-2995. |
[12] |
XIE Ying-chao1,2, WANG Rui-feng1,2, CAO Yuan1,2, LIU Kun1*, GAO Xiao-ming1,2. Research on Detecting CO2 With Off-Beam Quartz-Enhanced Photoacoustic Spectroscopy at 2.004 μm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2664-2669. |
[13] |
CHENG Gang1, CAO Ya-nan1, TIAN Xing1, CAO Yuan2, LIU Kun2*. Influence of Photoacoustic Cell Geometrical Shape on the Performance of Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(08): 2345-2351. |
[14] |
WANG Qiao-yun, YIN Xiang-yu, YANG Lei, XING Ling-yu. Geometrical Optimization of Resonant Ellipsoidal Photoacoustic Cell in Photoacoustic Spectroscopy System[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(05): 1351-1355. |
[15] |
LIU Li-xian1, 2, 3, HUAN Hui-ting1, 2, Mandelis Andreas2, SHAO Xiao-peng1*. Multiple Dissolved Gas Analysis in Transformer Oil Based on Fourier Transform Infrared Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(03): 684-687. |
|
|
|
|