光谱学与光谱分析 |
|
|
|
|
|
The Study on Infrared Spectra of 7-Hydroxycoumarin by Density Functional Theory |
JIA Fei-yun1, SU Yu1, RAN Ming2, ZHU Jiang1, ZHANG Bo1* |
1. Teaching and Research Group of Chemistry, North Sichuan Medical College, Nanchong 637007, China 2. Department of Chemistry and Material Science, Sichuan Normal University, Chengdu 610066, China |
|
|
Abstract Infrared spectroscopy is an important source of information for the identification of the compounds structure and it is great significant for biological activity research of natural and organic drug molecules. With the theoretical calculation method is more reasonable and calculation accuracy continues to improve, Theoretical calculate advantage is more obvious in the infrared spectrum simulation and vibration modes attributable identified. And it has important reference value for experimental study of infrared spectral analysis. Using density functional theory, geometry optimizations and frequencies calculation of 7-Hydroxycoumarin were performed at the level of B3LYP/6-311G(d,p), the stable structure and all vibration modes of 7-Hydroxycoumarin were attained. The results show that the infrared absorption peak of 7-hydroxycoumarin is mainly distributed in the several regions in wave number of 3 700~3 500, 3 150~3 000, 1 750~1 400, 1 400~1 000, 1 000~50 cm-1. In addition to the vibration in a wave number range of 3 700~3 500, 3 150~3 000 cm-1 is relatively independent, and were attributed to OH stretching vibration and benzene ring CH stretching vibration, the other several vibration regions are more complex, the different degree of spectral peaks is composed of multiple vibration modes. Finally, based on the theoretical analysis of the vibration mode, the vibration modes of 7-Hydroxycoumarin molecule were assigned, and in order to discuss the reliability of theoretical calculation method, the correlation diagram of the main absorption peak of 7-hydroxyl group was drawn from the theoretical value of X axis and the experimental value of Y axis, the correlation between experimental IR data and calculated IR data of 7-Hydroxycoumarin was analyzed through the linear regression method. Results show that they have good correlation, correlation coefficient values “r” equals 0.998 5,and the theory calculation of 7-Hydroxycoumarin IR by density functional theory at the base set level is reliable.
|
Received: 2014-09-29
Accepted: 2015-02-10
|
|
Corresponding Authors:
ZHANG Bo
E-mail: zhangbo6606@163.com
|
|
[1] LUO Yong-ming(罗永明). Chemistry of Natural Medicine(天然药物化学). Wuhan:Huazhong University of Science & Technology Press(武汉:华中师范大学出版社), 2011. 80. [2] Kong L L, Hu J F, Chen L H. Chinese Pharmacological Bulletin, 2012, 28(2): 165. [3] Chen G, Xu G B. Chinese Traditional Patent Medicine, 2013, 35(6): 1288. [4] Shikishima Y, Takaishi Y, Honda G, et al. Chemical and Pharmaceutical Bulletin, 2011, 49(7):877. [5] Seema Singh, Shilpi Gupta, Bharat Singh, et al. J. Proteome Res., 2012, 11(6): 3259. [6] Karthik S, Nagaprasad Puvvada, Prashanth Kumar B N, et al. ACS Appl. Mater. Interfaces, 2013, 5(11): 5232. [7] Rajarajeshwari Thada, Shivashri Chockalingam, Ramesh Kumar Dhandapani, et al. J. Agric. Food Chem., 2013, 61(22): 5385. [8] Koneni V Sashidhara, Manoj Kumar, Vikram Khedgikar, et al. J. Med. Chem., 2013, 56(1): 109. [9] Jia Tingjian, Li Pengwei, Shang Zhiguo, et al. Chinese Journal of Light Scattering, 2007, 19(1): 1. [10] HU Jie-han, ZHENG Xue-fang(胡皆汉,郑学仿). Practical Infrared Spectroscopy(实用红外光谱学). Beijing: Science Press(北京:科学出版社), 2011. 101.
|
[1] |
CHENG Jia-wei1, 2,LIU Xin-xing1, 2*,ZHANG Juan1, 2. Application of Infrared Spectroscopy in Exploration of Mineral Deposits: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 15-21. |
[2] |
LI Jie, ZHOU Qu*, JIA Lu-fen, CUI Xiao-sen. Comparative Study on Detection Methods of Furfural in Transformer Oil Based on IR and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 125-133. |
[3] |
BAI Xi-lin1, 2, PENG Yue1, 2, ZHANG Xue-dong1, 2, GE Jing1, 2*. Ultrafast Dynamics of CdSe/ZnS Quantum Dots and Quantum
Dot-Acceptor Molecular Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 56-61. |
[4] |
YANG Cheng-en1, 2, LI Meng3, LU Qiu-yu2, WANG Jin-ling4, LI Yu-ting2*, SU Ling1*. Fast Prediction of Flavone and Polysaccharide Contents in
Aronia Melanocarpa by FTIR and ELM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 62-68. |
[5] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[6] |
LIU Jia, ZHENG Ya-long, WANG Cheng-bo, YIN Zuo-wei*, PAN Shao-kui. Spectra Characterization of Diaspore-Sapphire From Hotan, Xinjiang[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 176-180. |
[7] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[8] |
GUO Ya-fei1, CAO Qiang1, YE Lei-lei1, ZHANG Cheng-yuan1, KOU Ren-bo1, WANG Jun-mei1, GUO Mei1, 2*. Double Index Sequence Analysis of FTIR and Anti-Inflammatory Spectrum Effect Relationship of Rheum Tanguticum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 188-196. |
[9] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[10] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[11] |
DANG Rui, GAO Zi-ang, ZHANG Tong, WANG Jia-xing. Lighting Damage Model of Silk Cultural Relics in Museum Collections Based on Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3930-3936. |
[12] |
WAN Mei, ZHANG Jia-le, FANG Ji-yuan, LIU Jian-jun, HONG Zhi, DU Yong*. Terahertz Spectroscopy and DFT Calculations of Isonicotinamide-Glutaric Acid-Pyrazinamide Ternary Cocrystal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3781-3787. |
[13] |
LI Xiao-dian1, TANG Nian1, ZHANG Man-jun1, SUN Dong-wei1, HE Shu-kai2, WANG Xian-zhong2, 3, ZENG Xiao-zhe2*, WANG Xing-hui2, LIU Xi-ya2. Infrared Spectral Characteristics and Mixing Ratio Detection Method of a New Environmentally Friendly Insulating Gas C5-PFK[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3794-3801. |
[14] |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2. Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3802-3805. |
[15] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
|
|
|
|