|
|
|
|
|
|
Identification of Tea Based on Near-Infrared Spectra and Fuzzy Linear Discriminant QR Analysis |
HU Cai-ping1, HE Cheng-yu2, KONG Li-wei3, ZHU You-you3*, WU Bin4, ZHOU Hao-xiang3, SUN Jun2 |
1. Department of Computer Engineering, Jinling Institute of Technology, Nanjing 211169, China
2. School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, China
3. Taizhou Institute of Zhejiang University, Taizhou 317700, China
4. Department of Information Engineering, Chuzhou Polytechnic, Chuzhou 239000, China
|
|
|
Abstract The effects of different varieties of tea are different because of their different organic chemical components. Therefore, it is essential to find a technical method that can accurately and quickly identify tea varieties. Near-infrared (NIR) spectroscopy is a nondestructive detection technology correctly identifying tea varieties. Due to noise signals in the NIR spectra of tea samples collected by the NIR spectrometer, a fuzzy linear discriminant QR analysis method was proposed to accurately identify the NIR spectra of tea samples containing noise signals. After the dimensionality of NIR spectra was compressed by principal component analysis (PCA), it was reduced using fuzzy linear discriminant analysis (FLDA). The discriminant vector matrix was constructed from the eigenvectors obtained by FLDA. The discriminant vector matrix was decomposed by QR decomposition to obtain a new discriminant vector matrix. Then, the K-nearest neighbor (KNN) algorithm was used for classification, which has the advantage of high accuracy. Four kinds of tea samples, namely Yuexi Cuilan, Lu'an Guapian, Shiji Maofeng and Huangshan Maofeng, were taken as the experimental samples. There were 65 tea samples in each category, and the total number of tea samples was 260. Firstly, the NIR spectral data of tea samples were collected by the Fourier NIR spectrometer Antaris Ⅱ. Secondly, the obtained NIR spectral data of tea were preprocessed, and the scattering effect of spectral data was reduced through multiple scattering correction. Thirdly, the dimensionality of NIR data is 1 557, so PCA was used to reduce the dimensionality of the spectra to 7. Then, fuzzy linear discriminant QR analysis was performed to extract the identification information from the compressed NIR spectra, and the dimensionality of the data was further reduced to 3 dimensions. Finally, KNN was used to classify tea samples and achieved the accurate classification of tea varieties. Furthermore, the experimental results were compared including three algorithms, which are PCA combined with KNN, PCA and linear discriminant analysis (LDA) combined with KNN, PCA and fuzzy linear discriminant QR analysis combined with KNN. Under the weight index m=2 and K=1, the final classification accuracies of the three algorithms were 83.89%, 87.78% and 98.33%, respectively. The experimental results showed that fuzzy linear discriminant QR analysis provided a method for the identification of NIR spectra of tea, and its effect was better than PCA and LDA.
|
Received: 2022-06-22
Accepted: 2022-10-09
|
|
Corresponding Authors:
ZHU You-you
E-mail: Zhx1377099026@163.com
|
|
[1] Mahdavi-Roshan M, Salari A, Ghorbani Z, et al. Complementary Therapies in Medicine, 2020, 51: 102430.
[2] Vilela M M, Salvador L S, Teixeira L G I, et al. Archives of Oral Biology, 2020, 114: 104727.
[3] Gartenmann S J, Steppacher S L, Weydlich Y V, et al. Journal of Herbal Medicine, 2020, 21: 100337.
[4] Qi Z, Wu X, Yang Y, et al. Foods, 2022, 11: 763.
[5] Zhang T, Wu X, Wu B, et al. Journal of Food Process Engineering, 2022, 45(8): e14040.
[6] Firmani P, De Luca S, Bucci R, et al. Food Control, 2019, 100: 292.
[7] Wang Y J, Liu Y, Chen Y Y, et al. LWT-Food Science and Technology, 2021, 148: 111737.
[8] Wu X H, Zhu J, Wu B, et al. Computers and Electronics in Agriculture, 2018, 147: 64.
[9] Luo W, Tian P, Fan G Z, et al. Infrared Physics and Technology, 2022, 123: 104037.
[10] Thangavel K, Dhivya K. Engineering in Agriculture, Environment and Food, 2019, 12: 264.
[11] Qian L L, Li D W, Song X J, et al. Journal of Food Composition and Analysis, 2022, 105: 104203.
[12] Wu L, Gao Y, Ren W C, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 264: 120327.
[13] Diniz D G H P, Pistonesi F M, Alvarez B M, et al. Journal of Food Composition and Analysis, 2015, 39: 103.
[14] Anowar F, Sadaoui S, Selim B. Computer Science Review, 2021, 40: 100378.
[15] Wu X H, Zhou J J. Pattern Recognition, 2006, 39(11): 2236.
[16] Li Q, Wu X, Zheng J, et al. Foods, 2022,11(14): 2101.
[17] Xu Q, Wu X, Wu B, et al. Journal of Food Process Engineering, 2022, 45(4): e13993.
|
[1] |
GAO Feng1, 2, XING Ya-ge3, 4, LUO Hua-ping1, 2, ZHANG Yuan-hua3, 4, GUO Ling3, 4*. Nondestructive Identification of Apricot Varieties Based on Visible/Near Infrared Spectroscopy and Chemometrics Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 44-51. |
[2] |
BAO Hao1, 2,ZHANG Yan1, 2*. Research on Spectral Feature Band Selection Model Based on Improved Harris Hawk Optimization Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 148-157. |
[3] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[4] |
BAI Xue-bing1, 2, SONG Chang-ze1, ZHANG Qian-wei1, DAI Bin-xiu1, JIN Guo-jie1, 2, LIU Wen-zheng1, TAO Yong-sheng1, 2*. Rapid and Nndestructive Dagnosis Mthod for Posphate Dficiency in “Cabernet Sauvignon” Gape Laves by Vis/NIR Sectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3719-3725. |
[5] |
WANG Qi-biao1, HE Yu-kai1, LUO Yu-shi1, WANG Shu-jun1, XIE Bo2, DENG Chao2*, LIU Yong3, TUO Xian-guo3. Study on Analysis Method of Distiller's Grains Acidity Based on
Convolutional Neural Network and Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3726-3731. |
[6] |
LIU Xin-peng1, SUN Xiang-hong2, QIN Yu-hua1*, ZHANG Min1, GONG Hui-li3. Research on t-SNE Similarity Measurement Method Based on Wasserstein Divergence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3806-3812. |
[7] |
LUO Li, WANG Jing-yi, XU Zhao-jun, NA Bin*. Geographic Origin Discrimination of Wood Using NIR Spectroscopy
Combined With Machine Learning Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3372-3379. |
[8] |
ZHANG Shu-fang1, LEI Lei2, LEI Shun-xin2, TAN Xue-cai1, LIU Shao-gang1, YAN Jun1*. Traceability of Geographical Origin of Jasmine Based on Near
Infrared Diffuse Reflectance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3389-3395. |
[9] |
YANG Qun1, 2, LING Qi-han1, WEI Yong1, NING Qiang1, 2, KONG Fa-ming1, ZHOU Yi-fan1, 2, ZHANG Hai-lin1, WANG Jie1, 2*. Non-Destructive Monitoring Model of Functional Nitrogen Content in
Citrus Leaves Based on Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3396-3403. |
[10] |
FANG Zheng, WANG Han-bo. Measurement of Plastic Film Thickness Based on X-Ray Absorption
Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3461-3468. |
[11] |
HUANG Meng-qiang1, KUANG Wen-jian2, 3*, LIU Xiang1, HE Liang4. Quantitative Analysis of Cotton/Polyester/Wool Blended Fiber Content by Near-Infrared Spectroscopy Based on 1D-CNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3565-3570. |
[12] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[13] |
KANG Ming-yue1, 3, WANG Cheng1, SUN Hong-yan3, LI Zuo-lin2, LUO Bin1*. Research on Internal Quality Detection Method of Cherry Tomatoes Based on Improved WOA-LSSVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3541-3550. |
[14] |
HUANG Hua1, LIU Ya2, KUERBANGULI·Dulikun1, ZENG Fan-lin1, MAYIRAN·Maimaiti1, AWAGULI·Maimaiti1, MAIDINUERHAN·Aizezi1, GUO Jun-xian3*. Ensemble Learning Model Incorporating Fractional Differential and
PIMP-RF Algorithm to Predict Soluble Solids Content of Apples
During Maturing Period[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3059-3066. |
[15] |
JIA Zong-chao1, WANG Zi-jian1, LI Xue-ying1, 2*, QIU Hui-min1, HOU Guang-li1, FAN Ping-ping1*. Marine Sediment Particle Size Classification Based on the Fusion of
Principal Component Analysis and Continuous Projection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3075-3080. |
|
|
|
|