光谱学与光谱分析 |
|
|
|
|
|
Non-Invasive Detection of Blood Glucose Concentration Based on Photoacoustic Spectroscopy Combined with Principle Component Regression Method |
REN Zhong1,2, LIU Guo-dong1*, HUANG Zhen1, XIONG Zhi-hua1 |
1. Key Laboratory of Optic-electronic Communication, Jiangxi Science and Technology Normal University, Nanchang 330038, China2. College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China |
|
|
Abstract This paper presents a photoacoustic noninvasive setup of detecting blood glucose based on the tunable pulsed laser coupled with the confocal ultrasonic transducer and the forward detection model. To validate the reliability of the setup, in the experiments, the different concentrations of glucose aqueous solution are excitated by the Q-switched 532 nm pumped Nd∶YAG pulsed laser to generate the time-resolved photoacoustic signals. And the glucose aqueous solutions are scanned by the tunable pulsed laser in the infrared waveband from 1 300 to 2 300 nm with the interval of 10nm and the photoacoustic peak-to-peak values are gotten. The difference spectral method is used to get the characteristic wavelengths of glucose, and the principle component regression algorithm is used to determine three optimal wavelengths and establish the correction mathematical model between the photoacoustic peak-to-peak values and the concentrations. The experimental results demonstrate that the mechanism of the photoacoustic signal is agreement with the cylindrical model, and the predicted results of the correction and prediction samples based on the established correction model demonstrate that the root-mean-square error of correction and prediction are all less than 10 mg·dl-1, the correlation coefficient reaches 0.993 6.
|
Received: 2015-01-22
Accepted: 2015-05-05
|
|
Corresponding Authors:
LIU Guo-dong
E-mail: liuguodong95@163.com
|
|
[1] SUN Chang-yue,CAO Yu-zhen,YU Song-lin,et al(孙长月, 曹玉珍, 余松林,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 31(10): 2775. [2] MacKenzie H A, Ashton H S, Spiers S, et al. Clinical Chemistry, 1999,45(9): 1587. [3] Shen Y, Lu Z, Spiers S, et al. Applied Optics, 2000, 39(22): 4007. [4] Zhao Z, Myllyl R. Measurement Science and Technology, 2001, 12(12): 2172. [5] Zhao Z, Myllyl R. Applied Optics, 2005, 44(36): 7845. [6] Matti Kinnunen,Risto Myllyl. Journal of Physics D: Applied Physics, 2005, 38: 2654. [7] Christison G B. MacKenzie H A, Med. Biol. Eng. Comput.,1993, 31(3): 284. [8] Kottmann J, Rey J M, Sigrist M W. Review of Scientific Instruments, 2011, 82: 084903. [9] Kottmann J, Rey J M, Luginbühl J, et al. Biomedical Optics Express, 2012, 3(4): 667. [10] Kottmann J,Grob U, Rey J M, et al. Sensors, 2013, 13(1): 535. [11] Pleitez Rafael M , Lieblein T, Bauer A, et al. Analytical Chemistry, 2013, 85(2): 1013. [12] SHEN Yao-chun, WANG Chun, MacKenzie H A,et al(沈耀春, 王 春, MacKenzie H A,等). Journal of Nanjing University·Natural Science(南京大学学报·自然科学), 2000, 36(5): 632. [13] SHI Xiao-wei, XIAO Xiao(石小巍, 肖 啸). Infrared(红外), 2009, 30(1): 20. [14] LING Ming-sheng, QIAN Zhi-yu(凌明胜, 钱志余). Journal of Biomedical Engineering Research(生物医学工程研究), 2006, 4: 217. [15] ZENG Lv-ming, LIU Guo-dong, REN Zhong, et al. Proc. SPIE, 2009, 7280: 72802F. [16] GAO Li-li, TAO Wei, ZHAO Hui(高丽丽, 陶 卫, 赵 辉). Optical Instruments(光学仪器), 2012, 34(6): 1. [17] Diebold G J,Sun T. Acustica, 1994, 80(4): 339. [18] Tam A C. Reviews of Modern Physics, 1986, 58: 381. [19] Patel C K N. Reviews of Modern Physics, 1981, 53(3): 517. [20] Nelson E T, Patel C K N. Optics Letters, 1981, 6(7): 354. [21] Lai H M, Young K. Journal of the Acoustical Society of America, 1982, 72(6): 2000. [22] Zhao Z, Nissil S, Ahola O, et al. IEEE Transactions on Instrumentation and Measurements, 1998, 47(2): 578. [23] ZHANG Xiao-feng, CAO Hui, SHANG Zhi-yuan(张小凤, 曹 辉, 尚志远). Journal of Shanxi Normal University·Natural Sciences(陕西师范大学学报·自然科学版), 1999, 27(3): 50. [24] Seppo N, Onni A, Harri K, et al. Proc. SPIE, 1998, 3199: 2. [25] Shen Y C, MacKenzie H A, Lindberg J, et al. Proc. SPIE, 1999, 3863: 167. |
[1] |
SUN Hai-xia, ZHANG Shu-juan*, XUE Jian-xin, ZHAO Xu-ting, LIU Jiang-long. Application of Spectral and Imaging Technique to Detect Quality and Safety of Fruits and Vegetables: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1779-1785. |
[2] |
LI Ying1, LI Yao-xiang1*, LI Wen-bin2, JIANG Li-chun3. Model Optimization of Wood Property and Quality Tracing Based on Wavelet Transform and NIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1384-1392. |
[3] |
HUANG Chang-ping1, ZHU Xin-ran1, 2, ZHANG Chen-lu3, QIAO Na1, 4, HU Shun-shi3, ZHANG Li-fu1*. Pork Freshness Spectral Feature Index: Development and Sensitivity Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 552-558. |
[4] |
YANG Yan-fang1, 2, PEI Kai-long1, 2, YIN Xu-kun1, 2, WU Hong-peng1, 2, LI Shang-zhi1, 2, CUI Ru-yue1, 2, MA Wei-guang1, 2, ZHANG Lei1, 2, YIN Wang-bao1, 2, DONG Lei1, 2*, JIA Suo-tang1, 2. Photoacoustic Spectroscopy Based Methane Sensor Using a Double-Pass Photoacoustic Cell[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 616-620. |
[5] |
ZHANG Jin1, WANG Jie1, SHEN Yan3, ZHANG Jin-bo4, CUI Hong-liang1,2*, SHI Chang-cheng2*. Wavelet-Based Image Fusion Method Applied in the Terahertz Nondestructive Evaluation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3683-3688. |
[6] |
ZHA Shen-long1, 2, LIU Kun1, ZHU Gong-dong1, TAN Tu1, WANG Lei1, WANG Gui-shi1, MEI Jiao-xu1, GAO Xiao-ming1*. Acetylene Detection Based on Resonant High Sensitive Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2673-2678. |
[7] |
SUN Hai-xia, XUE Jian-xin, ZHANG Shu-juan*, LIU Jiang-long, ZHAO Xu-ting. Detection of Internal Quality in Fresh Jujube Based on Moisture Compensation and Visible/Near Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2513-2518. |
[8] |
MAI Wei1, 2, ZHAO Xiao-ming1, 2, ZHANG Jian-fei1, 2*, XU Zhi-wei1, 2, LI Zheng1, 2. Multivariate Calibration of a UV-Vis Spectrophotometer Used for Online Measurements of Chemical Oxygen Demand in Dyeing Wastewater[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(07): 2105-2109. |
[9] |
WANG Hui1, TIAN Han-you1, ZHANG Shun-liang1, ZHANG Hao2, ZHAO Bing1, LI Jia-peng1, QIAO Xiao-ling1*. On-Line Noninvasive Prediction of Cholesterol Level of Fresh Pork within NIR Medium Wavelength Region with Portable Near-Infrared Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1759-1764. |
[10] |
SONG Wei1, LIU Zhuo2, QI Bao-ling1, GUO Yue1, WANG Li-li1, WANG Hai2*, HE Cheng-yan2, ZHAO Bing1*. Non-Destructive Detection of Escherichia Coli Based on the SERS Substrate of Semiconductor Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1403-1407. |
[11] |
YOU Jia1, LI Jing-bin1*, HUANG Di-yun1, PENG Shun-zheng2. Study on the Rapid Detection of Delinted Cottonseeds Conductivity with Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1437-1441. |
[12] |
CHEN Yi-kang1, JU Yu2, HAN Li2 . Study on Pressure Characteristics of Photoacoustic Spectroscopy and TDLAS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 27-31. |
[13] |
QIN Wu-chang, TANG Xiu-ying*, PENG Yan-kun, ZHAO Xing-hua . Identification of Fertilized Chicken Eggs Based on Visible/Near-Infrared Spectrum During Early Stage of Incubation [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(01): 200-204. |
[14] |
HU Meng-han1,2, DONG Qing-li1*, LIU Bao-lin1* . Comparison of Predicting Blueberry Firmness and Elastic Modulus with Hyperspectral Reflectance, Transmittance and Interactance Imaging Modes [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3651-3656. |
[15] |
WANG Fan, LI Yong-yu*, PENG Yan-kun, ZHENG Xiao-chun . Determination of Tomato’s SSC and TS Based on Diffuse Transmittance Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(10): 3185-3189. |
|
|
|
|