光谱学与光谱分析 |
|
|
|
|
|
Cryogenic Raman Spectroscopic Characteristics of NaCl-H2O,CaCl2-H2O and NaCl-CaCl2-H2O: Application to Analysis of Fluid Inclusions |
MAO Cui1,CHEN Yong1,2*,ZHOU Yao-qi1,GE Yun-jin1,ZHOU Zhen-zhu1,WANG You-zhi3 |
1. College of Geo-Resource and Information, China University of Petroleum, Dongying 257061, China2. State Key Laboratory of Enhanced Oil Recovery, PetroChina Exploration and Development Research Institute, Beijing 100083, China3. Exploration and Development Research Institute of PetroChina Daqing Oilfield Company, Daqing 163000, China |
|
|
Abstract Accurately diagnosing the types of the salt and calculating the salinity quantitatively are the significant content of fluid inclusions. The traditional method of testing fluid inclusions salinity is cooling. To overcome the difficulty for observing freezing phase transition, the authors tested the spectrum of NaCl-H2O, CaCl2-H2O and NaCl-CaCl2-H2O systems at -180 ℃ by laser Raman spectroscopy. The result demonstrates that the ratio of peak values has linear relationship with salinity. Calibration curves were established by typical ratio of hydro-halite at 3 420 cm-1 to the ice at 3 092 cm-1, and the ratio of antarcticite at 3 432 cm-1 to the ice at 3 092 cm-1. The calibration curves have very high correlation coefficient. This method is verified by synthetic hydrocarbon-bearing aqueous fluid inclusions and quartz aqueous fluid inclusions of well Fengshen 6 in Dongying sag. The results of the authors’ experiments show that cryogenic Raman spectroscopy can not only identify the types of the salts but also determine the salinity effectively in fluid inclusions.
|
Received: 2010-02-26
Accepted: 2010-05-28
|
|
Corresponding Authors:
CHEN Yong
E-mail: yongchen@hdpu.edu.cn, chyhdpu@yahoo.com.cn
|
|
[1] Roedder E. Mineralogical Society of America, 1984, 12: 644. [2] LU Huan-zhang, FAN Hong-rui, NI Pei, et al(卢焕章, 范宏瑞, 倪 培,等). Fluid Inclusion(流体包裹体). Beijing: Science Press(北京: 科学出版社), 2004. 11. [3] Roedder E. Geological Survey Professional Paper, 1972, 440-JJ: 164. [4] Hall D L, Sterner S M, Bodnar R J. Econ. Geol., 1988, 83: 197. [5] Mernagh T P, Wilde A R. Geochim. Cosmochim. Acta, 1989, 53(4): 765. [6] Dubessy J, Audeoud D, Wilkins R, et al. Chem. Geol., 1982, 37(1/2): 137. [7] Dubessy J, Boiron M C, Moissette A, et al. Eur. J. Mineral., 1992, 4(5): 885. [8] Samson I M, Walker R T. The Canadian Mineralogist, 2000, 38: 35. [9] ZHANG Nai, ZHANG Da-jiang, ZHANG Shui-chang, et al(张 鼐,张大江,张水昌,等). Science in China(中国科学),2005,35(12):1165. [10] Ni Pei, Ding Junying, Rao Bing. Chinese Science Bulletin, 2006, 51(1): 108. [11] Baumgartner M, Bakker R J. Chemical Geology, 2009, 265: 335. [12] Bakker R J. The Canadian Mineralogist, 2004, 42: 1283. [13] Lü Xin-biao, YAO Shu-zhen, HE Mou-chun(吕新彪,姚书振,何谋春). Earth Science Frontiers(地学前缘),2001,8(1):429. [14] CHEN Yong, LIN Cheng-yan, YU Wen-quan,et al(陈 勇,林承焰,于雯泉,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2010,30(1):95. [15] CHEN Yong, ZHOU Yao-qi, ZHA Ming, et al(陈 勇,周瑶琪,查 明,等). Geochimica(地球化学),2008,37(1):22. [16] Borisenko A S. Soviet Geol. & Geophys, 1977, 18: 11. [17] Crawford M L. Short Course Handbook, 1981, 6: 75. [18] Handa Y P, Mishima O, Whalley E. J. Chem. Phys, 1986, 84: 2766. [19] Tulk C A, Klug D G, Barnderhorst R. et al. J. Chem. Phys., 1998, 109: 8478.
|
[1] |
LIU Lu-yao1, ZHANG Bing-jian1,2*, YANG Hong3, ZHANG Qiong3. The Analysis of the Colored Paintings from the Yanxi Hall in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2054-2063. |
[2] |
CHEN Sheng, ZHANG Xun, XU Feng*. Study on Cell Wall Deconstruction of Pinus Massoniana during Dilute Acid Pretreatment with Confocal Raman Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2136-2142. |
[3] |
HE Qing1, JIANG Qin1, XING Li-da2, 3, AN Yan-fei1, HOU Jie4, HU Yi5. Microstructure and Raman Spectra Characteristics of Dinosaur Eggs from Qiyunshan, Anhui Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2143-2148. |
[4] |
CAI Zong-qi1, FENG Wei-wei1, 2*, WANG Chuan-yuan1. The Study of Oil Film Thickness Measurement on Water Surface Based on Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1661-1664. |
[5] |
WU Jun, YOU Jing-lin*, WANG Yuan-yuan, WANG Jian, WANG Min, Lü Xiu-mei. Raman Spectroscopic Study of Li2B4O7 Crystal and Melt Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1736-1740. |
[6] |
ZHANG Lu-tao, ZHOU Guang-ming*, ZHANG Cai-hong, LUO Dan. The Preparation of the New Membrane-Like Gold Nanoparticles Substrate and the Study of Its Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1741-1746. |
[7] |
CHEN Si-yuan1, YANG Miao1, LIU Xiao-yun2*, ZHA Liu-sheng1*. Study on Au@Ag Core-Shell Composite Bimetallic Nanorods Laoding Filter Paper as SERS Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1747-1752. |
[8] |
MA Ying1, WANG Qi2, QIU Zhi-li1*, LU Tai-jin3, LI Liu-fen1, CHEN Hua3, DENG Xiao-qin1, BO Hao-nan1. In-Situ Raman Spectroscopy Testing and Genesis of Graphite Inclusions in Alluvial Diamonds from Hunan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1753-1757. |
[9] |
LIU Jia1, YANG Ming-xing1, 2*, DI Jing-ru1, 2, HE Chong2. Spectra Characterization of the Uvarovite in Anorthitic Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1758-1762. |
[10] |
OUYANG Ai-guo, ZHANG Yu, TANG Tian-yi, LIU Yan-de. Study on Density, Viscosity and Ethanol Content of Ethanol Diesel Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1772-1778. |
[11] |
PENG Heng, LIU Shuai, CHEN Xiang-bai*. Raman Study of Perovskite (C6H5CH2NH3)2PbBr4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1763-1765. |
[12] |
ZHONG Qian1, 2, 3, WU Qiong2, 3, LIAO Zong-ting1, 2, 3*, ZHOU Zheng-yu1, 2, 3. Vibrational Spectral Characteristics of Ensignia Actinolite Jade from Guangxi, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1786-1792. |
[13] |
XU Wei-jie1, WU Zhong-chen1, 2*, ZHU Xiang-ping2, ZHANG Jiang1, LING Zong-cheng1, NI Yu-heng1, GUO Kai-chen1. Classification and Discrimination of Martian-Related Minerals Using Spectral Fusion Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1926-1932. |
[14] |
GAO Hao1, WANG Xiao1, SHANG Lin-wei1, ZHAO Yuan1, YIN Jian-hua1*, HUANG Bao-kun2*. Design and Application of Small NIR-Raman Spectrometer Based on Dichroic and Transmission Collimating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1933-1937. |
[15] |
LU Shu-hua1, 2*, WANG Yin-shu3. Developments in Detection of Explosives Based on Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1412-1419. |
|
|
|
|