|
|
|
|
|
|
Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai* |
Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, China
|
|
|
Abstract Reduced nicotinamide adenine dinucleotide (NADH) plays a crucial role in many biochemical reactions in human metabolism. Noninvasive and in vivo monitoring of the NADH level in skin tissue is of great interest. In this paper, the Raman scattering experiment and density functional theory (DFT) calculation have been applied to investigate the vibrational properties of NADH in the spectral range of 200~3 300 cm-1. The DFT calculation was performed with hybrid exchange functional using B3LYP functions with a polarized 6-311+G(d,p) basis. To achieve accurate analytical vibrational frequency calculation, the ground-state geometry of NADH molecule was first optimized at B3LYP/6-311+G(d,p) level of theory without any symmetry restrain, and the bond lengths and bond angles of NADH molecule were calculated. Then, the calculated wavenumbers were normally scaled with a necessary wavenumber linear scaling procedure by accounting for anharmonicity in DFT calculation. The DFT calculated spectrum of NADH is in good agreement with the Raman experimental spectrum: a good linear correlation between calculated and experimental wavenumbers has been obtained in the spectral range of 200~3 300 cm-1, and the deviations are smaller than 5 cm-1. In addition, the characteristic vibrational modes of the three parts adenine, nicotinamide, and dinucleotide of NADH molecule have been assigned and discussed, which would be helpful for the noninvasive and in vivo analyses of NADH. The characteristic mode of adenine at 732 cm-1 can be chosen as the most representative model for analyzing NADH. The characteristic mode of nicotinamide at 1 690 cm-1 can be chosen as another representative mode for further analyzing NADH. The characteristic modes of dinucleotide at 1 086 and 1 339 cm-1 can be chosen as a combination for further more accurately analyzing NADH. Therefore, when applying the Raman method for noninvasive and in vivo monitoring of the NADH level in skin tissue, first, the most representative mode at 732 cm-1 can be used for quick analyses, then the mode at 1 690 cm-1 and/or the combination modes of 1 086 and 1 339 cm-1 can be used for further accurate analyses.
|
Received: 2021-04-25
Accepted: 2021-07-23
|
|
Corresponding Authors:
HOU Hua-yi, CHEN Xiang-bai
E-mail: hhy@wit.edu.cn;xchen@wit.edu.cn
|
|
[1] Grivennikova V G, Gladyshev G V, Vinogradov A D. BBA-Bioenergetics, 2020, 1861(8): 148207.
[2] Krysiuk I, Horak I, Shandrenko S. Biotechnologia Acta, 2020, 13(2): 32.
[3] Schwarzmann L, Pliquett R U, Simm A, et al. Bioscience Reports, 2021, 41(1): BSR20200340.
[4] Maynard A G, Kanarek N. Cell Metabolism, 2020, 31(4): 660.
[5] GUO Peng-cheng, XUE Jing-hong, CHEN Xiang-bai(郭鹏程,薛靖虹,陈相柏). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2018, 38(4): 1129.
[6] Chen X B, Guo P C, Huyen N T, et al. Applied Physics Letters, 2017, 110(12): 122405.
[7] Peng H, Wu D X, Hou H Y, et al. Journal of Applied Spectroscopy, 2020, 87(4): 608.
[8] Taplin F, O’Donnell D, Kubic T, et al. Applied Spectroscopy, 2013, 67(10): 1150.
[9] Piotrowski L, Urbaniak M, Jedrzejczak B, et al. Review of Scientific Instruments, 2016, 87(3): 036111.
[10] Sibrecht G, Bugaj O, Filberek P, et al. Postpy Biologii Komórki, 2017, 44(4): 333.
[11] Becke A D. Journal of Chemical Physics, 1996, 104: 1040.
[12] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision B01, 2010.
[13] He H, Zheng Y, Chen H, et al. Science China Chemistry, 2012, 55(8): 1548.
[14] Xie Y, Mukamurezi G, Sun Y, et al. European Food Research and Technology, 2012, 234(6): 1091.
[15] Yue K T, Martin C L, Chen D, et al. Biochemistry, 1986, 25(17): 4941.
|
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[3] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[4] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[5] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[6] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[7] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[8] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[9] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[10] |
LI Meng-meng1, TENG Ya-jun2, TAN Hong-lin1, ZU En-dong1*. Study on Freshwater Cultured White Pearls From Anhui Province Based on Chromaticity and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1504-1507. |
[11] |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen. Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1022-1027. |
[12] |
ZHANG Li-sheng. Photocatalytic Properties Based on Graphene Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1058-1063. |
[13] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[14] |
REN Yong-tian, HU Yi, CHEN Jun, CHEN Jun*. Study on Compressed Sensing Method for Raman Spectroscopic Analysis of Isotope Hydrogen Gas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 776-782. |
[15] |
FU Ying-ying, ZHANG Ping, ZHENG Da-wei , LIN Tai-feng*, WANG Hui-qin, WU Xi-hao, SONG Jia-chen. Preparation and SERS Performance of Au-Nylon Flexible Membrane Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 692-698. |
|
|
|
|