|
|
|
|
|
|
Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen |
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116000, China
|
|
|
Abstract With the development of the plastic industry, microplastic, which is difficult to degrade in nature, became one of the main environmental pollutants. Moreover, it harms human health as it accumulates within the organisms and environment. Therefore, the detection and assessment of microplastics in the environment have been highly concern in recent years. Most the works first extract microplastics from samples by flotation, density or centrifugation separation system, and then find the microplastics under a microscope directly or combine with Raman spectroscopy, Fourier Transform infrared spectroscopy, Hyperspectral imaging and other methods for analysis and identification. Nonetheless, these methods require a long waiting time for pretreatment and could easily be affected by subjective factors. To identify whether the microplastics are in environmental samples or not quickly and accurately, we propose to use the multi-channel image acquisition, including white light channel imaging and Coherent Anti-stokes Raman Scattering (CARS) spectral imaging. CARS spectral imaging is a non-invasive and non-destructive real-time imaging method based on chemical bond vibration. Microplastic with a diameter of 10 μm polluted seawater and sand were simulated by the collected seawater/sand mixing with polystyrene microspheres. We detected the distribution of polystyrene in seawater intuitively through multi-channels image acquisition. The multi-channel image of polystyrene microspheres in the sand was collected and compared with the image by Raman spectroscopy. In the detection of Raman spectroscopy, the signal of polystyrene microspheres is easily interfered with by the fluorescence signal of sand, and only when the laser is focused on the location of polystyrene, does the weak signal can be detected. In the multi-channel image acquisition and detection, polystyrene microspheres can be seen in the sand, and we used a simple morphological analysis and filtering algorithm to make the microplastic signal obvious. Multi-channels image acquisition for microplastics detecting (in seawater and sand) without pretreatment is fast and simple, which has a certain potential for detecting microplastics in the environment value.
|
Received: 2021-03-12
Accepted: 2021-06-17
|
|
Corresponding Authors:
LIU Kun
E-mail: liukun@dlut.edu.cn
|
|
[1] Zhao J, Ran W, Teng J, et al. Science of the Total Environment, 2018, 640: 637.
[2] de Haan W P, Sanchez-Vidal A, Canals M, et al. Marine Pollution Bulletin, 2019, 140: 523.
[3] Cincinelli A, Scopetani C, Chelazzi D, et al. Chemosphere, 2017, 175: 391.
[4] Geilfus N, Munson K M, Sousa J, et al. Marine Pollution Bulletin, 2019, 145: 463.
[5] Collicutt B, Juanes F, Dudas S E. Environmental Pollution, 2019, 244: 135.
[6] Hernandez-Gonzalez A, Saavedra C, Gago J, et al. Marine Pollution Bulletin, 2018, 137: 526.
[7] Karbalaei S, Hanachi P, Walker T R, et al. Environmental Science and Pollution Research, 2018, 25(36SI): 36046.
[8] Huang B, Sun L, Liu M, et al. Environmental Science and Pollution Research, 2020, 28(2): 1675.
[9] Panebianco A, Nalbone L, Giarratana F, et al. Food Control, 2019, 106(UNSP 106722): 106722.
[10] Scanes E, Wood H, Ross P. Marine Pollution Bulletin, 2019, 149: 110537.
[11] Karlsson T M, Vethaak A D, Almroth B C, et al. Marine Pollution Bulletin, 2017, 122(1-2): 403.
[12] Hermsen E, Pompe R, Besseling E, et al. Marine Pollution Bulletin, 2017, 122(1-2): 253.
[13] Dodson G Z, Shotorban A K, Hatcher P G, et al. Marine Pollution Bulletin, 2020, 151: 110869.
[14] Zhang S, Yang X, Gertsen H, et al. Science of the Total Environment, 2018, 616: 1056.
[15] HOU Guo-hui,CHEN Bing-ling,LUO Teng, et al(侯国辉,陈秉灵,罗 腾, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(2): 606.
|
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[3] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[4] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[5] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[6] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[7] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[8] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[9] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[10] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[11] |
LI Meng-meng1, TENG Ya-jun2, TAN Hong-lin1, ZU En-dong1*. Study on Freshwater Cultured White Pearls From Anhui Province Based on Chromaticity and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1504-1507. |
[12] |
ZHANG Li-sheng. Photocatalytic Properties Based on Graphene Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1058-1063. |
[13] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[14] |
REN Yong-tian, HU Yi, CHEN Jun, CHEN Jun*. Study on Compressed Sensing Method for Raman Spectroscopic Analysis of Isotope Hydrogen Gas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 776-782. |
[15] |
FU Ying-ying, ZHANG Ping, ZHENG Da-wei , LIN Tai-feng*, WANG Hui-qin, WU Xi-hao, SONG Jia-chen. Preparation and SERS Performance of Au-Nylon Flexible Membrane Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 692-698. |
|
|
|
|