|
|
|
|
|
|
Study on the Inspection of Shooting Residues by Micro-Raman Spectroscopy |
ZHAO Sen, LIANG Xiao-tian, YU Meng-ke, CAI Jing* |
Zhejiang Police College, Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province,Hangzhou 310053, China |
|
|
Abstract To establish a method to use Raman Microscope Imaging Spectrometer to inspect the propellant powder, the product after the propellant combustion, and the shooting residue. Collect the propellant particles of the imitation 9×19 Balabellum pistol ammunition and the combustion product of the “QSZ92” 9 mm pistol propellant and extract the shooting residue from the shooter’s hand, the shooting residue in the barrel and the target. Shoot the residue on the target. The Raman Microscope Imaging Spectrometer was used to perform Raman detection on the collected propellant gunpowder, gunpowder combustion products and shooting residue samples. The experiment found that 455 nm laser should be used to detect the above samples. This wavelength laser can effectively avoid the interference of fluorescence; the laser intensity is 6.0 mW, the energy Raman intensity can reach the maximum, and it can be better distinguished from other impurity peaks; observe the objective lens at the same time choose the 50 times condition. Under these multiple conditions, the microscopic morphological characteristics of the sample to be tested can be seen, and the Raman signal can be absorbed to the greatest extent. Using the above parameters, the Raman signal obtained by the sample to be tested has the best effect. The results of the detection spectrum of Raman spectroscopy proved that the main components of the gunpowder, the composition after the burning of the gunpowder and the shooting residue extracted from other parts were basically the same, and these components were mainly derived from the organic components in the sample to be tested. After the gunpowder is burned, the Raman intensity of some parts of the gunpowder and other parts extracted from the shooting residue has decreased and changed relative to the fired gunpowder. The fluorescence phenomenon has been strengthened in the experiment, which proves that certain specific components will change after the shooting. Under the condition of a 50x objective lens, the microscopic morphology is highly comparable. It is found that the surface of the object to be tested has the characteristics of the black and bright surface, collapsed voids and cracks. These characteristics can be regarded as the typical microscopic morphological features of different types of samples to be tested and can also be used as a judgment shot strong evidence of residue. This method can use Raman spectroscopy to perform non-destructive testing of propelled gunpowder, products after burning of gunpowder, and shooting residues, which meets the current spectral inspection and forensic inspection requirements for such samples. At the same time, the method has high sensitivity, fast analysis speed and easy operation.
|
Received: 2020-10-09
Accepted: 2021-02-04
|
|
Corresponding Authors:
CAI Jing
E-mail: caijing@zjjcxy.cn
|
|
[1] ZHAO Peng-cheng, ZOU Ning, ZHENG Ji-long(赵鹏程, 邹 宁, 郑吉龙). Journal of People’s Public Security University of China·Science and Technology(中国人民公安大学学报·自然科学版), 2003, 9(6): 16.
[2] QIAN Xiao-fan, SHI Ying, ZHANG Peng-xiang, et al(钱晓凡, 施 英, 张鹏翔, 等). The Journal of Light Scattering(光散射学报), 2001,(1): 47.
[3] Dalby O, Butler D, Birkett J W. Journal of Forensic Sciences, 2010, 55(4): 924.
[4] Tarifa A, Almirall J R. Science & Justice, 2015, 55(3): 168.
[5] Laza D, Nys B, De Kinder J, et al. Journal of Forensic Sciences, 2007, 52(4): 842.
[6] Aksoy C, Bora T, Şenocak N, et al. Forensic Science International, 2015, 250: 87.
[7] Zuzanna Broek-Mucha. X-Ray Spectrometry, 2007, 36(6):398.
[8] Geiman I, Leona M, Lombardi J R. Journal of Forensic Sicences, 2010, 54(4): 947.
[9] Braz André, López-López María, García-Ruiz Carmen. Forensic Science International, 2015, 249: 92.
[10] QIN Zhen-ke, YANG Fei-yu, LIU Wen-bin, et al(秦真科,杨飞宇,刘文武,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2017, 37(1): 114.
[11] WU Bin, XIA Wei, TANG Yong, et al(吴 斌, 夏 伟, 汤 勇, 等). Acta Armamentarii(兵工学报), 2003, 24(4): 525.
[12] Bueno J, Sikirzhytski V, Lednev I K. Analytical Chemistry, 2012, 84(10): 4334.
[13] María López-López, Juan José Delgado, Carmen García-Ruiz. Analytical Chemistry, 2012, 84(8): 3581.
[14] Paris C, Coupry C. Journal of Raman Spectroscopy, 2005, 36(1): 77. |
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[3] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[4] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[5] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[6] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[7] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[8] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[9] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[10] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[11] |
LI Meng-meng1, TENG Ya-jun2, TAN Hong-lin1, ZU En-dong1*. Study on Freshwater Cultured White Pearls From Anhui Province Based on Chromaticity and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1504-1507. |
[12] |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen. Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1022-1027. |
[13] |
ZHANG Li-sheng. Photocatalytic Properties Based on Graphene Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1058-1063. |
[14] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[15] |
REN Yong-tian, HU Yi, CHEN Jun, CHEN Jun*. Study on Compressed Sensing Method for Raman Spectroscopic Analysis of Isotope Hydrogen Gas[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 776-782. |
|
|
|
|