光谱学与光谱分析 |
|
|
|
|
|
Optimized-Design of Spectral Discriminator for Infrared Spectra of Polluted Gases |
NIE Liang, ZHANG Jun* |
School of Optoelectronic Information Science and Technology, Yantai University,Yantai 264005, China |
|
|
Abstract According to the spectral features of polluted-gases infrared spectra, a mixed multi-branch spectral discriminator is proposed. Experimental results indicate that the spectral discriminator not only has simple structure and high veracity for classification and recognition, but also has remarkable flexibility and stability. So it is a high-efficiency discriminator for real-time identified infrared spectra of polluted gases.
|
Received: 2002-12-28
Accepted: 2003-04-26
|
|
Corresponding Authors:
ZHANG Jun
|
|
Cite this article: |
NIE Liang,ZHANG Jun. Optimized-Design of Spectral Discriminator for Infrared Spectra of Polluted Gases[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2004, 24(08): 953-956.
|
|
|
|
URL: |
http://www.gpxygpfx.com/EN/Y2004/V24/I08/953 |
[1] Hoffland L D, Piffath R I,Bouck J B. Opt. Eng., 1985, 24(6): 982. [2] ZHANG Jun,XUN Yu-long(张 骏,荀毓龙). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 1998, 18(6): 649. [3] ZHANG Jun et al(张 骏等). J. of Infrared & Millim Waves(红外与毫米波学报), 1997, 16(6): 463. [4] YANG Guang-zheng et al(杨光正等). Pattern recognition(模式识别). Hefei: The Press of University of Science and Technology of China(合肥:中国科技大学出版社), 2001. 7. [5] BIAN Zhao-qi et al(边肇祺等). Pattern recognition(模式识别). Beijing: Tsinghua University Press(北京:清华大学出版社),2000. 83. [6] WANG Bi-quan et al(王碧泉等). Pattern Recognition-Theory, Method and Application(模式识别-理论、方法和应用). Beijing:Geological Press(北京:地质出版社),1987. 113.
|
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[4] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[5] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[6] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[7] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[8] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[9] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[10] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[11] |
TIAN Xue1, CHE Qian1, YAN Wei-min1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Discrimination of Millet Varieties and Producing Areas Based on Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1841-1847. |
[12] |
HU Bin1, 2, FU Hao1, WANG Wen-bin1, ZHANG Bing1, 2, TANG Fan3*, MA Shan-wei1, 2, LU Qiang1, 2*. Research on Deep Sorting Approach Based on Infrared Spectroscopy for High-Value Utilization of Municipal Solid Waste[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1353-1360. |
[13] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[14] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[15] |
WANG Yan-ru, TANG Hai-jun*, ZHANG Yao. Study on Infrared Spectral Detection of Fuel Contamination in Mobil Jet Oil II Lubricating Oil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1541-1546. |
|
|
|
|