|
|
|
|
|
|
Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin* |
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
|
|
|
Abstract Fired clay products can absorb water molecules and be re-hydroxylated, and the amount of structural hydroxyl groups generated has a certain relationship with the storage time. Based on the theory of rehydroxylation in fired-clay, thermogravimetric analysis can be used to study the dating of pottery products. Infrared and Raman spectroscopy techniques can also be used to analyze the structural hydroxyl information in mineral materials, so people hope to explore the use of spectral non-destructive analysis for dating traditional ceramics instead of the thermogravimetric method. In order to verify the feasibility, we collected a variety of typical raw materials and traceable ancient ceramic potshards in this paper and analyzed their internal structural hydroxyl groups by infrared and Raman spectroscopy. The obvious peaks of aluminum hydroxyl in orthoclase, porcelain clay and kaolinite can be observed in the range of 3 600~3 700 cm-1 both in infrared and Raman spectra. When analyzing traditional ceramic samples, there is no peak of the structural hydroxyl group in this range in the infrared spectrum. When the wavelength of the excitation light of the Raman spectroscopy is 532 nm, two obvious peaks can be observed in the range of 3 600~4 000 cm-1 in the spectra of many samples. When the wavelength was changed, there was no peak in the corresponding rang. Especially when the excitation light wavelength is 514 nm, two peaks can be observed at 4 288 and 4 512 cm-1. The peaks observed when the excitation light wavelengths are 532 and 514 nm can correspond to about 659 and 669 nm in the wavelength mode of Raman spectra. The results showed that when the excitation light wavelength is 532 nm, the two peaks observed in the range of 3 600~4 000 cm-1 in the Raman spectrum should not be characteristic signal of structural hydroxyl groups in minerals, but rather sharp fluorescence peak. Under current technical conditions, infrared and Raman spectroscopy is difficult to be applied for rehydroxylation dating of Chinese traditional high-temperature ceramic products.
|
Received: 2021-03-17
Accepted: 2021-06-04
|
|
Corresponding Authors:
FENG Song-lin
E-mail: fengsl@ihep.ac.cn
|
|
[1] Heller L, Farmer V C, MaCkenzie R C, et al. Clay Minerals, 1962, 5(28): 56.
[2] Hamilton A, Hall C. Journal of American Ceramic Society, 2012, 95(9): 2673.
[3] Wilson M A, Hoff W D, Hall C, et al. Physical Review Letters, 2003, 90(12): 125503.
[4] Hall C, Hamilton A, Wilson M A. Journal of Archaeological Science, 2013, 40: 305.
[5] Wilson M A, Clelland S, Carter M A, et al. Archaeometry, 2014, 56(4): 689.
[6] Hall C, Wilson M A, Hoffw D. Journal of American Ceramic Society, 2011, 94(11): 3651.
[7] Wilson M A, Hamilton A, Ince C, et al. Proceedings of the Royal Society, 2012, 468: 3476.
[8] Bowen P K, Ranck H J, Scarlett T J, et al. Journal of American Ceramic Society, 2011, 94(8): 2585.
[9] Clegg F, Breen C, Carter M A, et al. Journal of AmericanCeramic Society, 2012, 95(1): 416.
[10] ZHU Ji-hao, FENG Song-lin, CHU Feng-you, et al(朱继浩,冯松林,初凤友,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(11): 3143.
[11] Kiefert L, Karamplas S. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 81(1): 119.
[12] Rice P M. Pottery Analysis. Chicago: The University of Chicago Press, 2015.
[13] Frost R L, Kloprogge J T. Journal of Raman Spectroscopy, 2000, 31: 415.
|
[1] |
LI Shu-jie1, LIU Jie1, DENG Zi-ang1, OU Quan-hong1, SHI You-ming2, LIU Gang1*. Study of Germinated Rice Seeds by FTIR Spectroscopy Combined With Curve Fitting[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1832-1840. |
[2] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[3] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[4] |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1. Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1704-1710. |
[5] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[6] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[7] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[8] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[9] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[10] |
XIE Yu-yu1, 2, 3, HOU Xue-ling1, CHEN Zhi-hui2, AISA Haji Akber1, 3*. Density Functional Theory Studies on Structure and Spectra of Salidroside Molecule[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1786-1791. |
[11] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[12] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[13] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[14] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[15] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
|
|
|
|