|
|
|
|
|
|
Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1* |
1. School of Computer and Information Engineering, Harbin University of Commerce,Heilongjiang Provincial Key Laboratory of E-commerce and Information Processing, Harbin 150028,China
2. School of Food Engineering, Harbin University of Commerce, Harbin 150028,China
|
|
|
Abstract Soybean meal is a by-product of soybean oil extracted from soybean after proper drying and heat treatment. It is the main raw material for making livestock feed, and its quality determines the nutritional value. There are many problems with existing soybean meal quality detection methods, such as the use of toxic chemical reagents, complex operation, long analysis time, so they cannot meet the needs of rapid detection and control in the production process. This paper proposes a multi-component detection method of soybean meal quality based on near infrared spectroscopy for on-line detection and control of product quality. 449 soybean meal samples were collected from the soybean oil processing line. The chemical values of moisture, protein and fat were determined by 105 ℃ oven method, Kjeldahl nitrogen determination method and Soxhlet extraction method, respectively. The diffuse reflectance spectra of samples were collected by the Swiss Buchi NIRMaster Fourier Transform near-infrared spectrometer. Firstly, the Mahalanobis distance method was used to remove abnormal samples, and then the spectral denoising was processed by various methods. The results show that the wavelet denoising effect is the best. KS and SPXY algorithms were used to determine the optimal sample partition of different components. In order to investigate the NIR absorption characteristics of soybean meal components, eliminate spectral redundancy and reduce the computational complexity of the model, interval Partial Least Squares (iPLS) was used to extract the features from the whole spectrum of 4 000~10 000 cm-1. The optimized characteristic absorption bands of moisture, protein and fat were 4 904~5 200, 4 304~4 600 and 4 304~4 600 cm-1, respectively. Finally, a Generalized Regression Neural Network (GRNN) model was established to predict the component contents of soybean meal. In order to reduce the input variables and the network scale improve the operation speed, PLS was used to reduce the dimension of spectral data, and the principal factor score was extracted as the input variable of GRNN. The PLS-GRNN prediction models of soybean meal multi-component contents were established by optimizing the smooth factor spread through the cross-validation and compared with the classical PLS and BP models. The results show that the PLS-GRNN models are good, the prediction determination coefficients (R2) of moisture, protein and fat are 0.976 9, 0.940 2 and 0.911 1, the Root-Mean-Square Errors of Prediction (RMSEP) are 0.091 2, 0.383 4 and 0.113 4, the Relative Standard Deviations (RSD) of prediction are 0.79 %, 0.83 % and 8.53 %, respectively. Although the prediction error for fat is relatively large, it is also within the available range of the model evaluation criteria. The results show that the near infrared spectroscopy analysis based on PLS-GRNN is feasible to detect soybean meal quality and can be used for quality monitoring in the actual production process.
|
Received: 2021-04-14
Accepted: 2021-10-14
|
|
Corresponding Authors:
ZHANG Yan-rong
E-mail: zhangyanrong_5@163.com
|
|
[1] GUO Zhong-yuan,SHEN Shi-lei,ZHOU Xin-qi,et al(郭中原,慎石磊,周新奇,等). Cereal & Feed Industry(粮食与饲料工业),2020,(4):46.
[2] Wei Z,Lin M. Journal of Applied Spectroscopy,2021,88(3):681.
[3] ZHUANG Shu-hua,ZHANG Guang-li,LU Li-jun(庄树华,张广利,卢利军). Oil Crops of China(中国油料),1991,(2):77.
[4] NA Rong(纳 嵘). Animal Husbandry and Feed Science(畜牧与饲料科学),2017,38(8):14.
[5] Lesson S. Journal of Applied Poultry Research,1997,(6):501.
[6] Fontaine J,Horr J,Schirmer B. Journal of Agricultural and Food Chemistry,2001,49:57.
[7] WANG Hong-mei,PENG Hai-hong,LIU Jia(王红梅,彭海宏,刘 佳). Feed and Animal Husbandry(饲料与畜牧),2009,(5):40.
[8] YANG Zeng-ling,YANG Qin-kai,SHEN Guang-hui,et al(杨增玲,杨钦楷,沈广辉,等). Transactions of the Chinese Society for Agricultural Machinery (农业机械学报),2019,50(8):358.
[9] Bayer F M,Kozakevicius A J,Cintra R J. Signal Processing,2019,162:10.
[10] Morais Camilo L M,Santos Marfran C D,Lima Kássio M G,et al. Bioinformatics (Oxford,England),2019,35(24):5257.
[11] Tian Han,Zhang Linna,Li Ming,et al. Infrared Physics and Technology,2018,95:88.
[12] Wei Xiao,Zheng Wanqin,Zhu Shiping,et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2020,238:118453.
[13] Ju Wei,Lu Changhua,Zhang Yujun,et al. Journal of Innovative Optical Health Sciences,2019,12(2):1950005.
[14] Specht D F. IEEE Transactions on Neural Networks,1991,2(6):568.
[15] Kamel A H,Afan H A,Sherif M,et al. Sustainable Computing:Informatics and Systems,2021,30:100514.
[16] Xu Hanxiao,Xu Da,Zhang Naiqian,et al. Journal of Proteome Research,2021,20(3):1657.
[17] Huang Yicheng,Liao Hsienshu. Journal of Intelligent & Fuzzy Systems,2020,38(2):2347. |
[1] |
LI Yuan1, ZHANG Wen-bo1, CHEN Xiao-lin2, 3, LI Han1, ZHANG Guan-jun1. Application of Gaussian Process Regression on the Quantitative Analysis of the Aging Condition of Insulating Paper by Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3073-3078. |
[2] |
WU Bin1, SHEN Jia-qi2, WANG Xin2, WU Xiao-hong3, HOU Xiao-lei2. NIR Spectral Classification of Lettuce Using Principal Component
Analysis Sort and Fuzzy Linear Discriminant Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3079-3083. |
[3] |
YANG Dong-feng1, LI Ai-chuan1, LIU Jin-ming1, CHEN Zheng-guang1, SHI Chuang1, HU Jun2*. Optimization of Seed Vigor Near-Infrared Detection by Coupling Mean Impact Value With Successive Projection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3135-3142. |
[4] |
YUAN Ke-yan 1, WANG Rong2, WANG Xiang-xiang2, XUE Li-ping2, YU Li2*. Identification and Restoration of Pseudo-Hydrolyzed Animal Protein of Lacteus Camelus Based on iPLS Model of Near-Infrared Measurement Spectrum of 6 mm Detection Plate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3143-3147. |
[5] |
HU Guo-tian1, 2, 3, SHANG Hui-wei1, 2, 3, TAN Rui-hong1, XU Xiang-hu1, PAN Wei-dong1. Research on Model Transfer Method of Organic Matter Content
Estimation of Different Soils Using VNIR Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3148-3154. |
[6] |
ZHANG Fu1, 2, 3, WANG Xin-yue2, CUI Xia-hua2, CAO Wei-hua2, ZHANG Xiao-dong1*, ZHANG Ya-kun2. Classification of Qianxi Tomatoes by Visible/Near Infrared Spectroscopy Combined With GMO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3291-3297. |
[7] |
LIU Jin, FU Run-juan, HAN Tong-shuai*, LIU Rong, SUN Di. Spectral Analysis of Human Tissues Based on a Direct Effective
Attenuation Coefficient Measurement[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2746-2751. |
[8] |
XU Lu1, CHEN Yi-yun1, 2, 3*, HONG Yong-sheng1, WEI Yu1, GUO Long4, Marc Linderman5. Estimation of Soil Organic Carbon Content by Imaging Spectroscopy With Soil Roughness[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2788-2794. |
[9] |
HONG Zi-yun1, 2, YAN Cheng-lin2, MIN Hong2, XING Yan-jun1*, LI Chen2, LIU Shu2*. Research on Coal Species Identification Based on Near-Infrared
Spectroscopy and Discriminant Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2800-2806. |
[10] |
GENG Ying-rui1, SHEN Huan-chao1, NI Hong-fei2, CHEN Yong1, LIU Xue-song1*. Support Vector Machine Optimized by Near-Infrared Spectroscopic
Technique Combined With Grey Wolf Optimizer Algorithm to
Realize Rapid Identification of Tobacco Origin[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2830-2835. |
[11] |
ZHAO Zhi-lei1, 2, 3, 4,WANG Xue-mei1, 2, 3,LIU Dong-dong1, 2, 3,WANG Yan-wei1, 2, 3,GU Yu-hong5,TENG Jia-xin1,NIU Xiao-ying1, 2, 3, 4*. Quantitative Analysis of Soluble Solids and Titratable Acidity Content in Angeleno Plum by Near-Infrared Spectroscopy With BP-ANN and PLS[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2836-2842. |
[12] |
CHEN Miao, HOU Ming-yu, CUI Shun-li, LI Zhen, MU Guo-jun, LIU Ying-ru, LI Xiu-kun, LIU Li-feng*. Construction of Near-Infrared Model of Peanut Sugar Content in
Different Seed Coat Colors[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2896-2902. |
[13] |
LI Rui1, LI Bo1*, WANG Xue-wen1, LIU Tao1, LI Lian-jie1,2, FAN Shu-xiang2. A Classification Method of Coal and Gangue Based on XGBoost and
Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2947-2955. |
[14] |
HAN Song-chen, LIU Sheng*. A New Model for Quantitative Analysis of Waste Textiles Using
Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2477-2481. |
[15] |
ZHONG Xiang-jun1, 2, YANG Li1, 2*, ZHANG Dong-xing1, 2, CUI Tao1, 2, HE Xian-tao1, 2, DU Zhao-hui1, 2. Effect of Different Particle Sizes on the Prediction of Soil Organic Matter Content by Visible-Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2542-2550. |
|
|
|
|