|
|
|
|
|
|
Prediction Model of Soil Moisture Content in Northern Cold Region Based on Near-Infrared Spectroscopy |
SHI Wen-qiang1, XU Xiu-ying1*, ZHANG Wei1, ZHANG Ping2, SUN Hai-tian1, 3, HU Jun1 |
1. College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China
2. College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China
3. South Subtropical Crops Research Institute of Chinese Academy of Tropical Agriculture Sciences, Zhanjiang 524091, China
|
|
|
Abstract There is a large temperature difference between summer and winter in northern China. Soil temperature difference greatly influences the measurement of soil moisture by NIR (Near-Infrared). A prediction model for soil NIR spectrum and soil moisture content under a wide range of temperature stress (-20~40 ℃) was introduced. Soil samples were collected in the experimental field of Heilongjiang Bayi Agricultural University. After drying and sieving, soil samples were dampened to moisture content ranging from 15% to 50%. Prediction model for NIR and soil moisture content under different temperature stress was built. 69 groups of spectral data was used as training set to build model based on the full-band spectral data and five different spectral signal preprocessing methods. BP (Back-propagation) neural network, optimized support vector machine (SVM) algorithm and Gaussian process algorithm (GP) were used to establish the prediction model of soil near-infrared spectrum and moisture content in northern cold areas,and verify the effect of the model. The learning rate for BP neural network was 0.05, the maximum training time was 5 000, and the number of hidden layer units was 20. SVM used the radial basis function and Leave-One-Out Cross-Validation to determine the optimal penalty parameter (0.87), which improved the accuracy of the model prediction. Marton kernel internally was used for the GP model. GP model was evaluated by the coefficient of determination (R2), and root mean square error (RMSE). Results show that the S_G-BP neural network model has the best performance among the BP neural network models, with R2 of 0.960 9 and RMSE of 2.379 7. The SNV-SVM model has the best performance among the SVM models with R2 of 0.991 1 and RMSE of 1.081 5. The GP models, S_G-GP model has the best performance among GP models, with R2 of 0.928 and RMSE of 3.258 1. In conclusion, the SVM model based on SNV preprocessing has the best training performance. 35 groups of spectral data were used as a prediction set to verify the model performance. According to the model comparison and analysis, the prediction model based on the SVM algorithm is better than the other two algorithms, among which the S_G-based SVM model has the best performance. R2 and RMSE are 0.992 1 and 0.736 9, respectively. Combining the parameters of modeling set and prediction set, the SVM model based on S_G has the best performance in this study. This model can predict soil moisture content under a wide range of temperature stress in cold regions, providing a theoretical foundation for the design and optimization of portable NIR soil moisture rapid measurement instruments in the cold region.
|
Received: 2021-05-11
Accepted: 2021-08-14
|
|
Corresponding Authors:
XU Xiu-ying
E-mail: xxy_byau@163.com
|
|
[1] Kumar S V, Dirmever P A, Peters-Lidard C D, et al. Remote Sensing of Environment, 2018, 204: 392.
[2] CAI Qing-kong, TAO Liang-liang, JIANG Rui-bo, et al(蔡庆空, 陶亮亮, 蒋瑞波, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2020, 51(7): 202.
[3] LIU Jin-ming, GUO Kun-lin, ZHEN Feng, et al(刘金明, 郭坤林, 甄 峰, 等). Transactions of the Chinese Society of Agricultural Engineering(农业工程学报), 2020, 36(18): 188.
[4] GUO Wen-chuan, ZHU De-kuan, ZHANG Qian, et al(郭文川, 朱德宽, 张 乾, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2020, 51(9): 350.
[5] YIN Zhe, SHAN Zhi-jie, YU Yang, et al(殷 哲,单志杰,于 洋,等). Forestry and Environmental Science(林业与环境科学),2020,36(3):121.
[6] REN Dong, QU Fang-fang, LU An-xiang, et al(任 东, 瞿芳芳, 陆安详, 等). Near Infrared Spectroscopy and Its Application(近红外光谱分析技术与应用). Beijing: Science Press(北京:科学出版社), 2016. 51.
[7] LIANG Xiu-ying, LI Xiao-yu(梁秀英, 李小昱). Journal of Transduction Technology(传感技术学报), 2011, 24(8): 1228.
[8] LI Xiao-yu, XIAO Wu, LI Pei-wu, et al(李小昱, 肖 武, 李培武, 等). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报), 2009, 40(5): 64.
[9] Thamasopinkul C, Ritthiruangdej P, Kasemsumran S, et al. Journal of Near Infrared Spectroscopy, 2017, 25(1): 36.
[10] Mou Y, You X G, Xu D Q, et al. Chemometrics and Intelligent Laboratory Systems, 2014. 132: 168.
[11] WANG Zhan, WANG Ke, WANG Wei-chao(王 展,王 可,王伟超). Laser & Optoelectronics Progress(激光与光电子学进展),2019,56(2):217.
[12] SUN Xiao-xiang, WANG Fang-dong, ZHAO Xiao-min, et al(孙小香, 王芳东, 赵小敏, 等). Journal of China Agricultural Resources and Regional Planning(中国农业资源与区划),2019,40(3): 35.
[13] Majdar R, Ghassemian H. International Journal of Remote Sensing,2017, 38(15): 4265.
[14] WANG Can, WU Xin-hui, LI Lian-qing, et al(王 璨, 武新慧, 李恋卿, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2018, 38(1): 36.
|
[1] |
WANG Xue-pei1, 2, ZHANG Lu-wei1, 2, BAI Xue-bing3, MO Xian-bin1, ZHANG Xiao-shuan1, 2*. Infrared Spectral Characterization of Ultraviolet Ozone Treatment on Substrate Surface for Flexible Electronics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1867-1873. |
[2] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[3] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[4] |
YU Zhi-rong, HONG Ming-jian*. Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1735-1740. |
[5] |
MENG Fan-jia1, LUO Shi1, WU Yue-feng1, SUN Hong1, LIU Fei2, LI Min-zan1*, HUANG Wei3, LI Mu3. Characteristic Extraction Method and Discriminant Model of Ear Rot of Maize Seed Base on NIR Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1716-1720. |
[6] |
PENG Yan-fang1, WANG Jun1, WU Zhi-sheng2*, LIU Xiao-na3, QIAO Yan-jiang2*. NIR Band Assignment of Tanshinone ⅡA and Cryptotanshinone by
2D-COS Technology and Model Application Tanshinone Extract[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1781-1785. |
[7] |
WANG Li-qi1, YAO Jing1, WANG Rui-ying1, CHEN Ying-shu1, LUO Shu-nian2, WANG Wei-ning2, ZHANG Yan-rong1*. Research on Detection of Soybean Meal Quality by NIR Based on
PLS-GRNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1433-1438. |
[8] |
FU Yan-hua1, LIU Jing2*, MAO Ya-chun2, CAO Wang2, HUANG Jia-qi2, ZHAO Zhan-guo3. Experimental Study on Quantitative Inversion Model of Heavy Metals in Soda Saline-Alkali Soil Based on RBF Neural Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1595-1600. |
[9] |
LI Jia-yi1, YU Mei1, LI Mai-quan1, ZHENG Yu2*, LI Pao1, 3*. Nondestructive Identification of Different Chrysanthemum Varieties Based on Near-Infrared Spectroscopy and Pattern Recognition Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1129-1133. |
[10] |
CHEN Chu-han1, ZHONG Yang-sheng2, WANG Xian-yan3, ZHAO Yi-kun1, DAI Fen1*. Feature Selection Algorithm for Identification of Male and Female
Cocoons Based on SVM Bootstrapping Re-Weighted Sampling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1173-1178. |
[11] |
LI Xue-ying1, 2, LI Zong-min3*, CHEN Guang-yuan4, QIU Hui-min2, HOU Guang-li2, FAN Ping-ping2*. Prediction of Tidal Flat Sediment Moisture Content Based on Wavelet Transform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1156-1161. |
[12] |
ZHANG Xiao-hong1, JIANG Xue-song1*, SHEN Fei2*, JIANG Hong-zhe1, ZHOU Hong-ping1, HE Xue-ming2, JIANG Dian-cheng1, ZHANG Yi3. Design of Portable Flour Quality Safety Detector Based on Diffuse
Transmission Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1235-1242. |
[13] |
ZHENG Kai-yi1, ZHANG Wen1, DING Fu-yuan1, ZHOU Chen-guang1, SHI Ji-yong1, Yoshinori Marunaka2, ZOU Xiao-bo1*. Using Ensemble Refinement (ER) Method to OptimizeTransfer Set of Near-Infrared Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1323-1328. |
[14] |
CHENG Jie-hong1, CHEN Zheng-guang1, 2*, YI Shu-juan2. Wavelength Selection Algorithm Based on Minimum Correlation Coefficient for Multivariate Calibration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 719-725. |
[15] |
SUN Zhi-xing, ZHAO Zhong-gai*, LIU Fei. Near-Infrared Spectral Modeling Based on Stacked Supervised Auto-Encoder[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 749-756. |
|
|
|
|