|
|
|
|
|
|
Photocatalytic Properties Based on Graphene Substrate |
ZHANG Li-sheng |
Beijing Key Laboratory for Nano-Photonics and Nano-Structure, Department of Physics, Capital Normal University, Beijing 100048, China
|
|
|
Abstract The surface plasma produced by the collective oscillation of conducting electrons in metal nanostructures can redistribute the electromagnetic field in time and space and redistribute the excited carriers. Graphene materials were prepared by the mechanical stripping method. The distribution of the layers in the two-dimensional region was studied by Raman spectroscopy. SERS enhancement of 2-naphthalene mercaptan (2-NT) as probe molecule on graphene substrate was studied. The results show that the Raman signal of the 2-NT molecule is enhanced on the graphene surface, and the SERS enhancement effect of graphene increases with the decrease of the number of layers. Based on graphene catalytic substrate, with the aid of SERS technology, the fingerprint is common. The photocatalytic reaction of 4,4’-dimercaptoazobenzene (DMAB) is generated by the real-time monitoring of p-Nitrobenzene thiophenol (4NBT) as a probe molecule driven by local surface plasma. Then, under the same experimental conditions, the DMAB can be produced by reverse chemical reaction under the plasma drive to generate para aminothiophenol (PATP) in situ. A uniform probe molecule 4NBT was assembled on the surface of a graphene catalytic substrate. The light Cui reaction was carried out by a certain wavelength focused laser to generate a new molecule DMAB. By this means, the specific DMAB molecular distribution or letters and Chinese characters information can be drawn on the micro nano-scale, and the micro nano-scale graphics drawing, and information encryption can be realized. Then, the graphics can be displayed and decrypted by mapping and two-dimensional imaging with the characteristic peak intensity of DMAB. In addition, the reverse photocatalytic reaction can be carried out by adding sodium borohydride on the encrypted substrate under the action of surface plasma and stimulated light to erase the micro nano scale graph and encrypted information.
|
Received: 2021-03-24
Accepted: 2021-05-25
|
|
|
[1] Fleischmann M, Hendra P J, McQuillan A J. Chem. Phys. Lett., 1974, 26: 163.
[2] Moskovits M. Rev. Mod. Phys., 1985, 57: 783.
[3] Zhan P, Wen T, Wang Z G, et al. Angew. Chem. Int. Ed. Engl., 2018, 57: 2846.
[4] Jiang L, Gu K, Liu R, et al. SN Applied Sciences, 2019, 1: 627.
[5] Das R, Parveen S, Bora A, et al. Carbon, 2020, 160: 273.
[6] Wei Y, Jiang C, Zhang Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 251: 119441.
[7] Huang Y, Wang W, Guo H, et al. J. Am. Chem. Soc., 2020, 142: 8483.
[8] Fang Y R, Zhang Z L, Sun M T. Rev. Sci. Instrum., 2016, 87: 033104.
[9] Zeng Z, Qi X, Li X, et al. Appl. Surf. Sci., 2019, 480: 497.
[10] Zhang Y, He S, Guo W, et al. Chem. Rev., 2018, 118: 2927.
[11] Aslam U, Rao V G, Chavez S, et al. Nat. Catal., 2018, 1: 656.
[12] Kim S, Kim J M, Park J E, et al. Adv. Mater., 2018, 30: 1704528.
[13] Ding Q, Chen M, Fang Y, et al. J. Phys. Chem. C, 2017, 121: 5225.
[14] Yang X Z, Yu H, Guo X, et al. Materials Today Energy, 2017, 5: 72.
|
[1] |
WANG Gan-lin1, LIU Qian1, LI Ding-ming1, YANG Su-liang1*, TIAN Guo-xin1, 2*. Quantitative Analysis of NO-3,SO2-4,ClO-4 With Water as Internal Standard by Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1855-1861. |
[2] |
HUANG Bin, DU Gong-zhi, HOU Hua-yi*, HUANG Wen-juan, CHEN Xiang-bai*. Raman Spectroscopy Study of Reduced Nicotinamide Adenine Dinucleotide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1679-1683. |
[3] |
ZHU Xiang1, 2*, YUAN Chao-sheng1, CHENG Xue-rui1, LI Tao1, ZHOU Song1, ZHANG Xin1, DONG Xing-bang1, LIANG Yong-fu2, WANG Zheng2. Study on Performances of Transmitting Pressure and Measuring Pressure of [C4mim][BF4] by Using Spectroscopic Techniques[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1674-1678. |
[4] |
WANG Ming-xuan, WANG Qiao-yun*, PIAN Fei-fei, SHAN Peng, LI Zhi-gang, MA Zhen-he. Quantitative Analysis of Diabetic Blood Raman Spectroscopy Based on XGBoost[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1721-1727. |
[5] |
YOU Gui-mei1, ZHANG Wen-jie1, CAO Zhen-wei2, HAN Xiang-na1*, GUO Hong1. Analysis of Pigments of Colored Paintings From Early Qing-Dynasty Fengxian Dian in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1874-1880. |
[6] |
LI Qing1, 2, XU Li1, 2, PENG Shan-gui1, 2, LUO Xiao1, 2, ZHANG Rong-qin1, 2, YAN Zhu-yun3, WEN Yong-sheng1, 2*. Research on Identification of Danshen Origin Based on Micro-Focused
Raman Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1774-1780. |
[7] |
WANG Zhong, WAN Dong-dong, SHAN Chuang, LI Yue-e, ZHOU Qing-guo*. A Denoising Method Based on Back Propagation Neural Network for
Raman Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1553-1560. |
[8] |
FU Qiu-yue1, FANG Xiang-lin1, ZHAO Yi2, QIU Xun1, WANG Peng1, LI Shao-xin1*. Research Progress of Pathogenic Bacteria and Their Drug Resistance
Detection Based on Surface Enhanced Raman Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1339-1345. |
[9] |
YAN Ling-tong, LI Li, SUN He-yang, XU Qing, FENG Song-lin*. Spectrometric Investigation of Structure Hydroxyl in Traditional Ceramics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1361-1365. |
[10] |
ZHAO Yong1, HE Men-yuan1, WANG Bo-lin2, ZHAO Rong2, MENG Zong1*. Classification of Mycoplasma Pneumoniae Strains Based on
One-Dimensional Convolutional Neural Network and
Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1439-1444. |
[11] |
LI Meng-meng1, TENG Ya-jun2, TAN Hong-lin1, ZU En-dong1*. Study on Freshwater Cultured White Pearls From Anhui Province Based on Chromaticity and Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1504-1507. |
[12] |
JIAO Ruo-nan, LIU Kun*, KONG Fan-yi, WANG Ting, HAN Xue, LI Yong-jiang, SUN Chang-sen. Research on Coherent Anti-Stokes Raman Spectroscopy Detection of
Microplastics in Seawater and Sand[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1022-1027. |
[13] |
OUYANG Zhou-xuan, MA Ying-jie, LI Dou-dou, LIU Yi. The Research of Polarized Energy Dispersive X-Ray Fluorescence for Measurement Trace Cadmium by Geant4 Simulation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1064-1069. |
[14] |
LÜ Yang, PEI Jing-cheng*, GAO Ya-ting, CHEN Bo-yu. Chemical Constituents and Spectra Characterization of Gem-Grade
Triplite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1204-1208. |
[15] |
LIU Su-ya-la-tu, WANG Zong-li, PANG Hui-zhong, TIAN Hu-qiang, WANG Xin *, WANG Jun-lin*. Terahertz Broadband Tunable Metamaterial Absorber Based on Graphene and Vanadium Dioxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1257-1263. |
|
|
|
|