光谱学与光谱分析 |
|
|
|
|
|
Detection of High Molecular Weight Polycyclic Aromatic Hydrocarbons in Mixed Colloid Solution of Spherical Au and Urchin-Like Au-Ag Alloy with Surface-Enhanced Raman Scattering |
SHI Xiao-feng, MENG Chen, MA Li-zhen, MA Hai-kuan, ZHANG Xin-min, MA Jun* |
Optics & Optoeletronics Laboratory, Ocean University of China, Qingdao 266100, China |
|
|
Abstract In this paper, Au nanosphere and Au-Ag alloy nanourchin were prepared by reducing the chloroauric acid. The mixed colloid solutions of Au nanosphere and Au-Ag alloy nanourchin were used as surface-enhanced Raman scattering (SERS) substrate to detect polycyclic aromatic hydrocarbons (PAHs) in aqueous solution. The size of Au-Ag alloy nanourchin particle was about 300~400 nm and the thorn-like bulge covered on it was about 40~100 nm. The mixed colloid solutions of Au nanosphere and Au-Ag alloy nanourchin which were optimized pH values and other parameters presented a better enhancement than Au nanosphere. The enhancement effect was about three times that of Au nanosphere colloid solution. Three kinds of high molecular weight PAHs, pyrene(4 rings), benzoanthracene(4 rings) and benzo[a]pyrene(5 rings), were detected. The results showed that there were good linear relationships between Raman intensity and concentration in the low concentration range and the mixed SERS substrate had a good reproducibility and stability. Their limits of detection (LODs) were 0.44, 2.92 and 1.64 nmol·L-1, respectively. The innovation of this paper was that the mixed colloid solutions of Au nanosphere and Au-Ag alloy nanourchin are prepared as SERS substrate and the trace-level high molecular weight PAHs are detected. The results show that the detection of trace-level high molecular weight PAHs in aqueous can be realized using the mixed SERS substrate prepared in this study, which proposed an in-situ method for detecting the high molecular weight PAHs in aqueous.
|
Received: 2015-02-14
Accepted: 2015-06-16
|
|
Corresponding Authors:
MA Jun
E-mail: majun@ouc.edu.cn
|
|
[1] Xie Yunfei, Wang Xu, Han Xiaoxia, et al. J. Raman Spectrosc., 2011, 42(5): 945. [2] Kneipp J, Kneipp H, Kneipp K. Chemical Society Reviews, 2008, 37(5): 1052. [3] Qu Lulu, Yuan Tingli, Li Dawei, et al. Analyst, 2013, 138(5): 1253. [4] Tian C, Liu Z, Jin J, et al. Nanotechnology, 2012, 23(16): 165604. [5] Shi Xiaofeng, Liu Shu, Han Xiaohong, et al. Applied spectroscopy, 2015, 69(5): 574. [6] Frens G. Nature. Phys. Sci.,1973, 241(1): 20. [7] Liu Z, Yang Z, Peng B, et al. Advanced Materials, 2014, 26(15): 2431. [8] Shinohara H, Yamakita Y, Ohno K. Journal of Molecular Structure, 1998, 442(1): 221. [9] Frank O, Jehlika J, Edwards H G M. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2007, 68(4): 1065. [10] Maddams W F, Royaud I A M. SpectrochimicaActa Part A: Molecular Spectroscopy, 1990, 46(2): 309. [11] Chiang H P, Mou B, Li K P, et al. Journal of Raman Spectroscopy, 2001, 32(1): 45. [12] FENG Ai, DUAN Jin-ming, DU Jing-jing, et al(冯 艾, 段晋明, 杜晶晶,等). Environmental Chemistry(环境化学), 2014, 33(1): 46. [13] DONG Xiao-yan, FANG Jing-huai, YANG Heng-jing, et al(董小燕, 方靖淮, 杨衡静,等). Jiangxi Science(江西科学), 2005, 23(5): 538. |
[1] |
XING Hai-bo1, ZHENG Bo-wen1, LI Xin-yue1, HUANG Bo-tao2, XIANG Xiao2, HU Xiao-jun1*. Colorimetric and SERS Dual-Channel Sensing Detection of Pyrene in
Water[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 95-102. |
[2] |
LU Wen-jing, FANG Ya-ping, LIN Tai-feng, WANG Hui-qin, ZHENG Da-wei, ZHANG Ping*. Rapid Identification of the Raman Phenotypes of Breast Cancer Cell
Derived Exosomes and the Relationship With Maternal Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3840-3846. |
[3] |
GUO He-yuanxi1, LI Li-jun1*, FENG Jun1, 2*, LIN Xin1, LI Rui1. A SERS-Aptsensor for Detection of Chloramphenicol Based on DNA Hybridization Indicator and Silver Nanorod Array Chip[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3445-3451. |
[4] |
LI Wen-wen1, 2, LONG Chang-jiang1, 2, 4*, LI Shan-jun1, 2, 3, 4, CHEN Hong1, 2, 4. Detection of Mixed Pesticide Residues of Prochloraz and Imazalil in
Citrus Epidermis by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3052-3058. |
[5] |
ZHAO Ling-yi1, 2, YANG Xi3, WEI Yi4, YANG Rui-qin1, 2*, ZHAO Qian4, ZHANG Hong-wen4, CAI Wei-ping4. SERS Detection and Efficient Identification of Heroin and Its Metabolites Based on Au/SiO2 Composite Nanosphere Array[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3150-3157. |
[6] |
SU Xin-yue1, MA Yan-li2, ZHAI Chen3, LI Yan-lei4, MA Qian-yun1, SUN Jian-feng1, WANG Wen-xiu1*. Research Progress of Surface Enhanced Raman Spectroscopy in Quality and Safety Detection of Liquid Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2657-2666. |
[7] |
ZHAO Yu-wen1, ZHANG Ze-shuai1, ZHU Xiao-ying1, WANG Hai-xia1, 2*, LI Zheng1, 2, LU Hong-wei3, XI Meng3. Application Strategies of Surface-Enhanced Raman Spectroscopy in Simultaneous Detection of Multiple Pathogens[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2012-2018. |
[8] |
CHENG Chang-hong1, XUE Chang-guo1*, XIA De-bin2, TENG Yan-hua1, XIE A-tian1. Preparation of Organic Semiconductor-Silver Nanoparticles Composite Substrate and Its Application in Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2158-2165. |
[9] |
LI Chun-ying1, WANG Hong-yi1, LI Yong-chun1, LI Jing1, CHEN Gao-le2, FAN Yu-xia2*. Application Progress of Surface-Enhanced Raman Spectroscopy for
Detection Veterinary Drug Residues in Animal-Derived Food[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1667-1675. |
[10] |
HUANG Xiao-wei1, ZHANG Ning1, LI Zhi-hua1, SHI Ji-yong1, SUN Yue1, ZHANG Xin-ai1, ZOU Xiao-bo1, 2*. Detection of Carbendazim Residue in Apple Using Surface-Enhanced Raman Scattering Labeling Immunoassay[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1478-1484. |
[11] |
LU Yan-hua, XU Min-min, YAO Jian-lin*. Preparation and Photoelectrocatalytic Properties Study of TiO2-Ag
Nanocomposites[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1112-1116. |
[12] |
WANG Yi-tao1, WU Cheng-zhao1, HU Dong1, SUN Tong1, 2*. Research Progress of Plasticizer Detection Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1298-1305. |
[13] |
LI Wei1, 2, HE Yao1, 2, LIN Dong-yue2, DONG Rong-lu2*, YANG Liang-bao2*. Remove Background Peak of Substrate From SERS Signals of Hair Based on Gaussian Mixture Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 854-860. |
[14] |
HAN Xiao-long1, LIN Jia-sheng2, LI Jian-feng2*. SERS Analysis of Urine for Rapid Estimation of Human Energy Intake[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 489-494. |
[15] |
HE Yao1, 2, LI Wei1, 2, DONG Rong-lu2, QI Qiu-jing3, LI Ping5, LIN Dong-yue2*, MENG Fan-li4, YANG Liang-bao2*. Surface Enhanced Raman Spectroscopy Analysis of Fentanyl in Urine Based on Voigt Line[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 85-92. |
|
|
|
|