光谱学与光谱分析 |
|
|
|
|
|
Polarization Modeling and Analysis of Light Scattering Properties of Multilayer Films on Slightly Rough Substrate |
CAO Hui, GAO Jun, WANG Ling-mei*, WANG Chi |
Laboratory of Image Information Processing,Hefei University of Technology, Hefei 230009, China |
|
|
Abstract To satisfy the demand of multilayer films on polarization detection, polarized bidirectional reflectance distribution function of multilayer films on slightly rough substrate is established on the basis of first-order vector perturbation theory and polarization transfer matrix. Due to the function, light scattering polarization properties are studied under multi-factor impacts of two typical targets-monolayer anti-reflection film and multilayer high-reflection films. The result shows that for monolayer anti-reflection film, observing positions have a great influence on the degree of polarization, for the left of the peak increased and right decreased compared with the substrate target. Film target and bare substrate can be distinguished by the degree of polarization in different observation angles. For multilayer high-reflection films, the degree of polarization is significantly associated with the number and optical thickness of layers at different wavelengths of incident light and scattering angles. With the increase of the layer number, the degree of polarization near the mirror reflection area decreases. It reveals that the calculated results coincide with the experimental data, which validates the correctness and rationality of the model. This paper provides a theoretical method for polarization detection of multilayer films target and reflection stealth technology.
|
Received: 2014-09-26
Accepted: 2015-01-22
|
|
Corresponding Authors:
WANG Ling-mei
E-mail: wanglingmei@hfut.edu.cn
|
|
[1] YAN Yun-hui, WANG Zhan, DONG De-wei(颜云辉, 王 展, 董德威). China Mechanical Engineering(中国机械工程), 2012, 23(17): 2136. [2] Collin C, Pattanaik S, LiKamWa P,et al. Proceedings of the 2014 Graphics Interface Conference,Canadian Information Processing Society, 2014. 201. [3] ZHAO Yong-qiang, PAN Quan, CHENG Yong-mei(赵永强, 潘 泉, 程永梅). Imaging Spectropolarimentric Remote Sensing and Application(成像偏振光谱遥感及应用). Beijing: National Defense Industry Press(北京:国防工业出版社), 2011. 107. [4] Priest R G, Germer T A. Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors, 2000, 1: 169. [5] Torrance K E, Sparrow E M. J. Opt. Soc. Am., 1967, 57(9): 1105. [6] Hyde M W, Schmidt J D, Havrilla M J. Optics Express, 2009, 17(24): 22138. [7] Prokopenko V T, Alekseev S A, Matveev N V,et al. Optics and Spectroscopy, 2013, 114(6): 961. [8] Germer T A. Applied Optics, 1997, 36(33): 8798. [9] Ellis K K. JOSA A, 1996, 13(8): 1758. [10] Germer T A. JOSAA, 2001, 18(6): 1279. [11] GONG Lei, WU Zhen-sen(巩 蕾, 吴振森). Acta Optica Sinica(光学学报), 2011, 31(10): 251. [12] CHEN Chao, ZHAO Yong-qiang,LUO Li,et al(陈 超, 赵永强, 罗 丽, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2010, 30(3): 729. [13] LIAO Yan-biao(廖延彪). Polarized Light(偏振光学). Beijing: Science Press(北京:科学出版社), 2003. 57. [14] Ding R, Tsang L, Braunisch H. 2011 IEEE 20th Conference on Electrical Performance of Electronic Packaging and Systems (EPEPS), 2011. 161. [15] Elson J M. JOSA A, 1995, 12(4): 729. [16] ZHAN Yuan-ling, WANG Li(战元龄, 王 立). Acta Physica Sinica(物理学报), 1990, 39(2): 194. [17] WANG Ling-mei, GAO Jun, XIE Zhao(王玲妹, 高 隽, 谢 昭). SCIENTIA SINICA Physica, Mechanica & Astronomica(中国科学:物理学 力学 天文学), 2013, 43(7): 833. [18] Thilak V, Voelz D G, Creusere C D. Applied Optics, 2007, 46(30): 7527. |
[1] |
GUO Wei1, CHANG Hao2*, XU Can3, ZHOU Wei-jing2, YU Cheng-hao1, JI Gang2. Effect of Continuous Laser Irradiation on Scattering Spectrum
Characteristics of GaAs Cells[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3674-3681. |
[2] |
LI Yong-qian1, 2, 3, FAN Hai-jun1, 2, 3*, ZHANG Li-xin1, 2, 3, WANG Lei1, 2, 3, WU Jia-qi1, 2, 3, ZHAO Xu1, 2, 3. Characteristics Research and Optimal Shaping of Brillouin Scattering Spectrum in Multimode Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3559-3564. |
[3] |
JIANG Chun-xu1, 2, TAN Yong1*, XU Rong3, LIU De-long4, ZHU Rui-han1, QU Guan-nan1, WANG Gong-chang3, LÜ Zhong1, SHAO Ming5, CHENG Xiang-zheng5, ZHOU Jian-wei1, SHI Jing1, CAI Hong-xing1. Research on Inverse Recognition of Space Target Scattering Spectral
Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3023-3030. |
[4] |
GUO He-qing1, 2, ZHANG Sheng-zi2*, LIU Xiao-meng2, JING Xu-feng1, WANG Hong-jun2. Research Progress of the Real-Time Detection System of Bioaerosols Based on Fluorescence Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2339-2347. |
[5] |
LAI Chun-hong*, ZHANG Zhi-jun, WEN Jing, ZENG Cheng, ZHANG Qi. Research Progress in Long-Range Detection of Surface-Enhanced Raman Scattering Signals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2325-2332. |
[6] |
DENG Chen-yang, LIAO Ning-fang*, LI Ya-sheng, LI Yu-mei. Reconstruction of Spectral Bidirectional Reflectance Distribution Function for Metallic Coatings Based on Additivity of Scattering Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2043-2049. |
[7] |
WANG Mei-ling1, 2, 3, 4, LI Fei1, 2, 3, 4*, WANG Xu-yang1, 2, 3, 4, ZHU Han-yu1, 2, 3, 4, QIAO Meng-dan1, 2, 3, 4, YUAN Jun-sheng1, 2, 3, 4*. Study on the Structure of K2SO4 Aqueous Solutions by X-Ray Scattering and Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1838-1845. |
[8] |
LI Jia-jia, XU Da-peng *, WANG Zi-xiong, ZHANG Tong. Research Progress on Enhancement Mechanism of Surface-Enhanced Raman Scattering of Nanomaterials[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1340-1350. |
[9] |
BAI Jie1, 2, NIU Zheng1, 2*, BI Kai-yi1, 2, WANG Ji1, 2, HUANG Yan-ru2, 3, SUN Gang1. Bi-Directional Reflection Characteristic of Vegetation Leaf Measured by Hyperspectral LiDAR and Its Impact on Chlorophyll Content Estimation[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(05): 1598-1605. |
[10] |
PAN Ke-yu1, 2, ZHU Ming-yao1, 2, WANG Yi-meng1, 2, XU Yang1, CHI Ming-bo1, 2*, WU Yi-hui1, 2*. Research on the Influence of Modulation Depth of Phase Sensitive
Detection on Stimulated Raman Signal Intensity and
Signal-to-Noise Ratio[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1068-1074. |
[11] |
SUN Zhi-ming1, LI Hui1, FENG Yi-bo1, GAO Yu-hang1, PEI Jia-huan1, CHANG Li1, LUO Yun-jing1, ZOU Ming-qiang2*, WANG Cong1*. Surface Charge Regulation of Single Sites Improves the Sensitivity of
Raman Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1075-1082. |
[12] |
YIN Xiong-yi1, SHI Yuan-bo1*, WANG Sheng-jun2, JIAO Xian-he2, KONG Xian-ming2. Quantitative Analysis of Polycyclic Aromatic Hydrocarbons by Raman Spectroscopy Based on ML-PCA-BP Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 861-866. |
[13] |
WANG Qiang-hui, SHEN Xue-ju, ZHOU Bing*, HUA Wen-shen, YING Jia-ju, ZHAO Jia-le. Land-Based Hyperspectral Imaging and Core Drive Model for Ground
Object Classification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(02): 614-622. |
[14] |
ZHU Chen-guang1, LIU Ya-jun2, LI Xin-xing1, 3, GONG Wei-wei4*, GUO Wei1. Detection Method of Freshness of Penaeus Vannamei Based on
Hyperspectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 107-110. |
[15] |
CHEN Yong1, 2, GUO Yun-zhu1, WANG Wei3*, WU Xiao-hong1, 2*, JIA Hong-wen4, WU Bin4. Clustering Analysis of FTIR Spectra Using Fuzzy K-Harmonic-Kohonen Clustering Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 268-272. |
|
|
|
|