|
|
|
|
|
|
Study on the Structure of K2SO4 Aqueous Solutions by X-Ray Scattering and Raman Spectroscopy |
WANG Mei-ling1, 2, 3, 4, LI Fei1, 2, 3, 4*, WANG Xu-yang1, 2, 3, 4, ZHU Han-yu1, 2, 3, 4, QIAO Meng-dan1, 2, 3, 4, YUAN Jun-sheng1, 2, 3, 4* |
1. School of Chemical Engineering, Hebei University of Technology/Engineering Research Center for Chemical Technology of the Efficient Utilization of Seawater Resources,Tianjin 300130, China
2. Collaborative Innovation Center of Hebei Modern Marine Chemical Technology, Tianjin 300130, China
3. School of Chemical Engineering, Hebei University of Technology/Chemical Energy Conservation Process Integration and Resource Utilization National-Local Joint Engineering Laboratory, Tianjin 300130, China
4. Tianjin Key Laboratory of Chemical Process Safety, Tianjin 300130, China
|
|
|
Abstract Potassium is one of the major elements in seawater. Research on the structure of potassium sulfate aqueous solution is helpful in explaining the microscopic mechanism of its solubility, thereby providing theoretical guidance for the separation and purification of potassium salt in seawater. In this paper, the microstructure of K2SO4 aqueous solution with different mass fraction was studied using an X-ray diffractometer refitted in the laboratory, Shanghai Synchrotron Radiation Facility device and Raman spectroscopy. The F(Q) obtained from the processing of the X-ray scattering data shows that the double peak near Q=2.5 Å-1 gradually becomes two peaks of equal intensity, which is associated with the hydrogen bonded network in the liquids. As the mass fraction increases, the peak position near Q=5.0 Å-1 moves to the right of the coordinate axis. It can be seen from G(r) that the peak at 2.8 Å tends to broaden with the increase of the mass fractions, which is mainly affected by the O—O interaction. In the Raman spectrum, the intensity of the shoulder peak near 3 200 cm-1 gradually decreases with the increase of solute content, and the overall peak shape becomes narrower in the range of 2 800~3 800 cm-1. The results of deconvolution fitting of Raman spectra show that adding K2SO4 destroys the tetrahedral hydrogen bond configuration of water and slightly promotes the formation of proton-donor hydrogen bonds. The analysis results from X-ray scattering and Raman spectroscopy indicated that the addition of K2SO4 destroyed the original tetrahedral network structure of water molecules.
|
Received: 2022-02-11
Accepted: 2022-06-25
|
|
Corresponding Authors:
LI Fei, YUAN Jun-sheng
E-mail: lifei2008ok@126.com; jsyuan@hebut.edu.cn
|
|
[1] HAN Chun-xiao(韩春晓). Salt Science and Chemical Industry(盐科学与化工),2020, 49(2): 4.
[2] GUO Xiao-fu, YUAN Jun-sheng, JI Zhi-yong, et al(郭小甫, 袁俊生, 纪志永, 等). Chemical Engineering(化学工程), 2020, 48(3): 11.
[3] Borodin O, Self J, Persson K A, et al. Joule, 2020,4(1): 69.
[4] Kistenmacher H, Popkie H, Clementi E. Journal of Chemical Physics, 1974, 61(3): 799.
[5] Wang Xiang-wen, Toroz Dimitrios, Kim Seonmyeong, et al. Physical Chemistry Chemical Physics, 2020, 22(28): 16301.
[6] Galvão A C, Jiménez Y P, Justel F J, et al. The Journal of Chemical Thermodynamics, 2020, 150: 106202.
[7] Laage D, Stirnemann G. The Journal of Physical Chemistry B, 2019, 123, 3312.
[8] Myint K H, Ding W, Willard A P. The Journal of Physical Chemistry B, 2021, 125(5): 1429.
[9] Laurent H, Baker D L, Soper A K, et al. The Journal of Physical Chemistry B, 2021, 125(46): 12774.
[10] Wikfeldt K T, Leetmaa M, Ljungberg M P, et al. The Journal of Physical Chemistry B, 2009, 113(18): 6246.
[11] Sun Qiang. Vibrational Spectroscopy, 2009, 51(2): 213.
[12] Ge H W, Zhao Y J, Yang H J, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 267:120543.
[13] Pavelec J, Diguiseppi D, Zavlavsky B Y, et al. Journal of Molecular Liquids, 2019, 275:463.
[14] Meng X Z, Zhuang X M, Fu Y P, et al. Vibrational Spectroscopy, 2020, 111(4): 103155.
[15] Mael L E, Peiker G, Busse H L, et al. The Journal of Physical Chemistry A, 2021, 125(51): 10742.
[16] Zhou L, Mernagh T P, Lelosq C. The Journal of Physical Chemistry B, 2019, 123(27): 5841.
[17] LI Fei, HAN Zhen, LI Dong-chan, et al(李 非, 韩 镇, 李栋禅, 等). Chinese Journal of Analysis Laboratory(分析实验室), 2014, 33(9): 1072.
[18] LIU Zi-yu(刘子禹). Master Dissertation(硕士论文). Hebei University of Technology(河北工业大学), 2016.
[19] Li Fei, Yuan Junsheng, Li Dongchan, et al. Journal of Molecular Structure, 2015, 1081: 38.
[20] Li Shenyu, Yuan Junsheng, Li Fei, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2016, 162: 27.
[21] WANG Xu-yang, CHEN Shuai, LI Fei, et al(王旭阳, 陈 帅, 李 非, 等). Journal of Atomic and Molecular Physics(原子与分子物理学报), 2020, 37(5): 768.
[22] CHEN Shuai, WANG Xu-yang, LI Fei, et al(陈 帅, 王旭阳, 李 非, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2021, 41(1): 116.
[23] ZHUANG Xin-ming, LI Shen-yu, LI Fei, et al(庄欣明,李申予,李 非,等). Acta Optica Sinica(光学学报), 2018, 38(6): 0630002.
[24] Juhás P, Davis T, Farrow C L, et al. Journal of Applied Crystallography, 2013, 46(2): 560.
[25] Maxwell W Terban,Simon J L Billinge. Chemical Reviews, 2022, 122(1): 1208.
[26] Brini E, Fennell C J, Fernandez-Serra M, et al. Chemical Reviews, 2017, 117(19): 12385.
[27] Rard J A, Miller D G, Albright J G, et al. Journal of Solution Chemistry, 2021, 50, 1315.
[28] Cao L D, Fang Y, Fang C H. Chemical Research in Chinese Universities, 2011, 27(3): 490.
[29] Devereux M, Meuwly M, Pezzella M, et al. Journal of Chemical Theory and Computation, 2020, 16(12): 7267.
[30] Zhou Y Q, Yamaguchi T, Yoshida K, et al. Journal of Molecular Liquids, 2018, 274(15): 173.
[31] Teychene J, Roux-de Balmann H, Maron L, et al. ACS Central Science, 2018, 4(11): 1531.
[32] Smirnov P R. Russian Journal of General Chemistry, 2020, 90(9): 1693.
[33] Gillan M J, Alfè D, Michaelides A. The Journal of Chemical Physics, 2016, 144(13): 130901.
[34] Ceriotti M, Fang W, Kusalik P G, et al. Chemical Reviews, 2016, 116(13): 7529.
[35] Li Y P, Li J C, Wang F. Proceedings of the National Academy of Sciences, 2013, 110(30): 12209.
[36] YANG Dan, XU Wen-yi(杨 丹, 徐文艺). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2009, 29(10): 2694.
[37] Huang X, Zhang L, Cai W J, et al. Chemical Engineering Science, 2022, 248(2): 117117.
[38] Mael L E, Peiker G, Busse H L, et al. The Journal of Physical Chemistry A, 2021, 121(51): 10742.
[39] Li D M, Zhu Z W, Sun D W. Journal of Molecular Liquids, 2021, 342:117498.
[40] Sun Q. Journal of Solution Chemistry, 2020, 49:1473.
|
[1] |
WANG Zi-xuan, YANG Miao, LIU Di-wen, MENG Bin, ZU En-dong*. The Study of Colored Freshwater Nucleated Pearl Via Raman Spectra and Chromaticity[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1684-1688. |
[2] |
LI Chang-ming1, GU Yi-fan2, ZHANG Hong-chen1, SONG Shao-zhong3*, GAO Xun2*. The Surface Enhanced Raman Spectroscopy Characteristics of Cyromazine Molecule Based on Density Function Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1566-1570. |
[3] |
LIU Jing, YAO Yu-zeng*, FU Jian-fei, LI Zi-ning, HOU Ting-ting, ZHANG Yong-li. Micro-Raman Spectral Characteristics and Implication of Magnetite in Gongchangling Iron Mine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1697-1702. |
[4] |
SI Min-zhen1, 2, WANG Min1, 2, LI Lun1, 2, YANG Yong-an1, 2, ZHONG Jia-ju3, YU Cheng-min3*. The Main Ingredients Analysis and Rapid Identification of Boletuses Based on Surface-Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(06): 1648-1654. |
[5] |
LIU Zhen-fang, HUANG Min*, ZHU Qi-bing, ZHAO Xin, YAN Sheng-qi. Spatially Offset Raman Spectroscopy Analysis Technology and Application in Food Subsurface Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1201-1208. |
[6] |
HUANG Li-jun1, ZHUANG Shun-qian2, FENG Yong-wei1, YANG Fang-wei2, SUN Zhen1, XIE Yun-fei2*, XUE Qing-hai1. Simultaneous Determination of Five Banned Sartan Compounds in Antihypertensive Health Food Using Thin-Layer Chromatography Combined With Surface-Enhanced Raman Spectroscopy (TLC-SERS)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(05): 1354-1363. |
[7] |
MA Jun-jie, LI Yan, WU Fu-rong, HE Kang, WANG Feng-ping*. Spectroscopic Study on the Pigments of the Architectural Colored
Paintings of the Altar of Agriculture in Beijing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 983-990. |
[8] |
TIAN Chao-fan, LI Jian-jun*, WENG Guo-jun, ZHU Jian, ZHAO Jun-wu*. Improved Num-Local Piecewise Polynomial Fitting Algorithm for
Accurate Correction of Raman Spectroscopy Baselines[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1073-1080. |
[9] |
LIU Zong-yi1, 2, ZHANG Cai-hong1, 2, JIANG Jian-kang1, 2, SHEN Bin-guo3, DING Yan-fei1, 2, ZHANG Lei-lei1, 2*, ZHU Cheng1, 2*. Rapid Determination of Total Flavonoids in Dendrobium Officinale Based on Raman Spectroscopy and CNN-LSTM Deep Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1018-1024. |
[10] |
ZHOU Ming-hao1, CHEN Xiao-gang1*, CUI Ji-feng1, BIAN Kai2, HU Feng2. Study on Recognition Method of Mine Water Source Based on Raman Spectrum Combined With WOA Characteristic Screening[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(04): 1039-1044. |
[11] |
GE Xue-feng, SHI Bin, TANG Meng-yuan, JI Kang, ZHANG Yin-ping, GU Min-fen*. Spectral Detection of Desloratadine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 751-755. |
[12] |
WANG Mao-cheng1, LI Gan1, CHENG Hao2, JIANG Wei1, CHEN Guang1, LI Hai-bo1*. Double-Wavelength NIR Raman Spectroscopy and the Application on
Corrosion Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 756-761. |
[13] |
ZHANG Juan1, LI Ke-xin2, QIN Dong-mei1, BAO De-qing1, 2, WANG Chao-wen2*. Spectroscopic Characteristics and Color Genesis of Yellowish-Green
Montebrasite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(03): 777-783. |
[14] |
MENG Xing-zhi, LIU Ya-qiu*, LIU Li-na. Raman Spectroscopy Combined With the WGANGP-ResNet Algorithm to Identify Pathogenic Species[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 542-547. |
[15] |
WU Fu-rong, LI Yan, MA Jun-jie, WANG Yu-hang, WANG Feng-ping*. The Effect of Different Irradiance on the Degradation Time of Realgar[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(02): 325-330. |
|
|
|
|