|
|
|
|
|
|
Detection Method of Freshness of Penaeus Vannamei Based on
Hyperspectral |
ZHU Chen-guang1, LIU Ya-jun2, LI Xin-xing1, 3, GONG Wei-wei4*, GUO Wei1 |
1. Beijing Laboratory of Food Quality and Safety, College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
2. Chengde No. 8 Middle School, Chengde 067000, China
3. Energy and Environment Engineering Institute, Nanchang Institute of Technology, Nanchang 330044, China
4. Transportation and Economic Research Institute of China Academy of Railway Sciences Group Corporation Limited, Beijing 100081, China
|
|
|
Abstract In this study, Penaeus vannamei was taken as the research object to explore an efficient, rapid and non-destructive freshness detection method. Total volatile basic nitrogen(TVB-N)is an important chemical index to judge the freshness of shrimp. However, the traditional method is time-consuming and labor-consuming, which limits the real-time detection of large quantities. In recent years, hyperspectral technology has been an analysis technology integrating image and spectral information. Each pixel in the hyperspectral image contains the spectral information of the whole band. This technology has become a technology of meat freshness detection. This study collected 860~1 700 nm hyperspectral data of Penaeus vannamei samples for 8 consecutive days. After removing the abnormal samples, 150 groups of test samples were determined. We collected 254-dimensional spectral data in each group. The original hyperspectral image was corrected in black and white, and ENVI software extracted the spectral data from the hyperspectral image. We ensured the corresponding relationship between the extracted spectral data and the TVB-N index. The average spectrum of the ROI is calculated to obtain the spectral data matrix, which is converted into ASCII code and saved. At the same time, the true value of TVB-N was obtained by the Kjeldahl method. In order to reduce the interference of water content of environment and shrimp surface and effectively eliminate the irrelevant information and noise, this study used a multiple scattering correction algorithms to preprocess the shrimp hyperspectral and selected seven sensitive bands. Finally, a quantitative prediction model of TVB-N of Penaeus vannamei was established based on 120 training set samples and 30 validation set samples. We compared the model of BPNN, RBFNN and PCA. The r and NRMSE of the BPNN model were 0.902 1 and 0.214 0, the RBFNN model were 0.868 3 and 0.223 0, PCR model were 0.757 6 and 0.390 0, respectively. The results showed that the MSC-BPNN model had the best prediction effect, and there is a close correlation between hyperspectral reflectance and freshness of Penaeus vannamei. This paper supports the freshness detection of shrimp based on spectral technology.
|
Received: 2021-06-14
Accepted: 2022-04-15
|
|
Corresponding Authors:
GONG Wei-wei
E-mail: gongweiwei@rails.com
|
|
[1] Huang X, Chen M, Wang W, et al. Journal of Aquatic Food Product Technology, 2020,29(6):507.
[2] Guo T, Huang M, Zhu Q, et al. Journal of Food Engineering, 2018, 218: 61.
[3] Moosavi-Nasab M, Khoshnoudi-Nia S, Azimifar Z, et al. Scientific Reports, 2021, 11(1):5094.
[4] Zhu M, Huang D, Hu X, et al. Food Science & Nutrition, 2020,8(10):5206.
[5] Sun J, Wang G, Zhang H, et al. Infrared Physics & Technology, 2020, 105(2): 103226.
[6] WANG Hui, HE Hong-ju, LIU Lu, et al(王 慧, 何鸿举, 刘 璐, 等). Food Science(食品科学), 2019, 40(5): 337.
[7] Crichton S, Kirchner S M, Porley V, et al. Meat Science, 2017, 129: 20.
[8] Shan J, Wang X, Russel M, et al. Food Analytical Methods, 2018,11: 1701.
[9] Qiu Y, Wu G, Xiao Z, et al. IEEE Access, 2019,7:121156.
[10] Moosavi-Nasab M, Khoshnoudi-Nia S, Azimifar Z, et al. Scientific Reports, 2021, 11(1):5094.
[11] Cao Y, Guan D, Huang W, et al. Information Fusion, 2018, 46: 206.
[12] Cai M, Hocine O, Mohammed A S, et al. Engineering with Computers, 2022,38: 3611.
[13] Zhang B, Dou C X, Zhang T F, et al. Neurocomputing, 2020, 397: 422.
[14] CHEN Shu-yi, ZHAO Quan-ming, DONG Da-ming(陈淑一, 赵全明, 董大明). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2020, 40(3):917.
[15] Yu X, Wang J, Wen S, et al. Biosystems Engineering, 2019, 178: 244. |
[1] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[2] |
WANG Cai-ling1,ZHANG Jing1,WANG Hong-wei2*, SONG Xiao-nan1, JI Tong3. A Hyperspectral Image Classification Model Based on Band Clustering and Multi-Scale Structure Feature Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 258-265. |
[3] |
GAO Hong-sheng1, GUO Zhi-qiang1*, ZENG Yun-liu2, DING Gang2, WANG Xiao-yao2, LI Li3. Early Classification and Detection of Kiwifruit Soft Rot Based on
Hyperspectral Image Band Fusion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 241-249. |
[4] |
WU Hu-lin1, DENG Xian-ming1*, ZHANG Tian-cai1, LI Zhong-sheng1, CEN Yi2, WANG Jia-hui1, XIONG Jie1, CHEN Zhi-hua1, LIN Mu-chun1. A Revised Target Detection Algorithm Based on Feature Separation Model of Target and Background for Hyperspectral Imagery[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 283-291. |
[5] |
CHU Bing-quan1, 2, LI Cheng-feng1, DING Li3, GUO Zheng-yan1, WANG Shi-yu1, SUN Wei-jie1, JIN Wei-yi1, HE Yong2*. Nondestructive and Rapid Determination of Carbohydrate and Protein in T. obliquus Based on Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3732-3741. |
[6] |
HUANG You-ju1, TIAN Yi-chao2, 3*, ZHANG Qiang2, TAO Jin2, ZHANG Ya-li2, YANG Yong-wei2, LIN Jun-liang2. Estimation of Aboveground Biomass of Mangroves in Maowei Sea of Beibu Gulf Based on ZY-1-02D Satellite Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3906-3915. |
[7] |
ZHOU Bei-bei1, LI Heng-kai1*, LONG Bei-ping2. Variation Analysis of Spectral Characteristics of Reclaimed Vegetation in an Ionic Rare Earth Mining Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3946-3954. |
[8] |
YUAN Wei-dong1, 2, JU Hao2, JIANG Hong-zhe1, 2, LI Xing-peng2, ZHOU Hong-ping1, 2*, SUN Meng-meng1, 2. Classification of Different Maturity Stages of Camellia Oleifera Fruit
Using Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3419-3426. |
[9] |
FU Gen-shen1, LÜ Hai-yan1, YAN Li-peng1, HUANG Qing-feng1, CHENG Hai-feng2, WANG Xin-wen3, QIAN Wen-qi1, GAO Xiang4, TANG Xue-hai1*. A C/N Ratio Estimation Model of Camellia Oleifera Leaves Based on
Canopy Hyperspectral Characteristics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3404-3411. |
[10] |
SHEN Ying, WU Pan, HUANG Feng*, GUO Cui-xia. Identification of Species and Concentration Measurement of Microalgae Based on Hyperspectral Imaging[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3629-3636. |
[11] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[12] |
QIAN Rui1, XU Wei-heng2, 3 , 4*, HUANG Shao-dong2, WANG Lei-guang2, 3, 4, LU Ning2, OU Guang-long1. Tea Plantations Extraction Based on GF-5 Hyperspectral Remote Sensing
Imagery in the Mountainous Area[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3591-3598. |
[13] |
ZHU Zhi-cheng1, WU Yong-feng2*, MA Jun-cheng2, JI Lin2, LIU Bin-hui3*, JIN Hai-liang1*. Response of Winter Wheat Canopy Spectra to Chlorophyll Changes Under Water Stress Based on Unmanned Aerial Vehicle Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3524-3534. |
[14] |
YANG Lei1, 2, 3, ZHOU Jin-song1, 2, 3, JING Juan-juan1, 2, 3, NIE Bo-yang1, 3*. Non-Uniformity Correction Method for Splicing Hyperspectral Imager Based on Overlapping Field of View[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3582-3590. |
[15] |
SUN Lin1, BI Wei-hong1, LIU Tong1, WU Jia-qing1, ZHANG Bao-jun1, FU Guang-wei1, JIN Wa1, WANG Bing2, FU Xing-hu1*. Identification Algorithm of Green Algae Using Airborne Hyperspectral and Machine Learning Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3637-3643. |
|
|
|
|