|
|
|
|
|
|
Research Progress on Enhancement Mechanism of Surface-Enhanced Raman Scattering of Nanomaterials |
LI Jia-jia, XU Da-peng *, WANG Zi-xiong, ZHANG Tong |
School of Materials and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China
|
|
|
Abstract Surface-enhanced Raman Scattering (SERS) technology has the advantages of high sensitivity, high resolution, non-destructive detection and no pre-processing. It has become a powerful tool for qualitative and quantitative molecular detection. The trace detection technology, which amplifies the Raman signal of the target analyte, can even provide rich structural information on the molecular level. Although the SERS enhancement mechanism has always been disputed, currently acknowledged enhancement mechanisms include physical enhancement (electromagnetic field enhancement) and chemical enhancement (principally contribution of charge transfer). With the application of metal, non-metal and other materials in SERS in recent years, many scholars have inspired extensive interest in the factors affecting the Raman signal enhancement of SERS substrate. Hence, it is of great significance to research the mechanism of SERS enhancement. In this review, the SERS enhancement mechanism is primarily elaborated on three aspects of the SERS electromagnetic enhancement mechanism, chemical enhancement mechanism and synergic mechanism, to analyze which factors affect the substrate enhancement effect and provide some references for the analysis of the SERS enhancement mechanism. At the same time, the problems faced by different base structures in the process of enhancement mechanism analysis were proposed: (1)In the electromagnetic enhancement mechanism, the single noble metal base had a great influence on the SERS electromagnetic enhancement mechanism due to its uneven distribution of “hot spots” and uncontrollable factors, which led to poor SERS sensitivity and repeatability. (2) In the chemical enhancement mechanism, the single semiconductor material was widely used in the SERS substrate due to its advantages of affordable price, stable material performance and easy surface modification. However, the effect on the SERS chemical enhancement mechanism was not obvious due to its low enhancement ability. (3)The SERS substrate is not limited to single metal or non-metal materials but more the combination of metal and non-metal.
|
Received: 2022-03-03
Accepted: 2022-06-09
|
|
Corresponding Authors:
XU Da-peng
E-mail: badi56441071@sina.com
|
|
[1] Mcquillan A J, Hendra P J, Fleischmann M. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1975, 65(2): 933.
[2] WANG Zi-xiong, XU Da-peng, ZHANG Yi-fan, et al(王子雄,徐大鹏,张一帆,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2022, 42(2): 341.
[3] Langer J, Jimenez de Aberasturi D, Aizpurua J, et al. American Chemical Society, 2020, 14: 28.
[4] Saini R K, Sharma A K, Agarwal A, et al. Materials Chemistry and Physics, 2022, 287: 126288.
[5] Gökhan D. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 278: 121308.
[6] Xie T H, Cao Z J, Li Y J, et al. Food Chemistry, 2022, 381: 132208.
[7] Wu J, Fang J H, Xu L. Applied Surface Science, 2021, 563: 150367.
[8] Li Y, Xin X L, Zhang T T, et al. Chemical Engineering Journal, 2021, 422: 129983.
[9] Shafi M, Zhou M X, Duan P Y, et al. Sensors and Actuators B: Chemical, 2022, 356: 131360.
[10] Zhang M, Wang Y A, Ma Y, et al. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022, 264: 120288.
[11] Nguyen H A, Mai Q D, Ngo X D, et al. Applied Surface Science, 2022, 584: 152555.
[12] Lombardi J R, Birke R L. The Journal of Physical Chemistry C, 2008, 112: 5605.
[13] Lombardi J R, Birke R L. Accounts of Chemical Research, 2009, 42(6): 734.
[14] Garrell R L. Annual Review of Analytical Chemistry, 2009, 394(7): 1717.
[15] Pilot R, Signorini R, Durante C, et al. Biosensors, 2019, 9(2): 57.
[16] Rivera V A G, Silva O B, Ledemi Y, et al. Collective Plasmon-Modes in Gain Media Quantum Emitters and Plasmonic Nanostructues. Springer International Publishing, 2015: 71.
[17] Willets K A, Duyne R P V. Annual Review of Physical Chemistry, 2007, 58(1): 267.
[18] Nitzan A, Brus L E. The Journal of Chemical Physics, 1981, 75(5): 2205.
[19] Shiohara A, Wang Y S, Liz-Marzán L M. Journal of Photochemistry & Photobiology Reviews, 2014, 21: 2.
[20] ZHANG Yi-fan, XU Da-peng, JIANG Heng-ze, et al(张一帆, 徐大鹏, 江恒泽, 等). Fine Chemicals(精细化工), 2020, 37(9): 1762.
[21] Dong J, Zhao X, Gao W, et al. Nanoscale Research Letters, 2019, 14(1): 118.
[22] Xu R, Yan L, Zhu Y Y, et al. Plasmonics, 2020, 15(6): 2061.
[23] Wang K Q, Li J J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 263(15): 1386.
[24] Yan X Y, Wang M L, Sun X, et al. Applied Surface Science, 2019, 479: 879.
[25] Furtak T E, Macomber S H. Chemical Physics Letters, 1983, 95(4-5): 328.
[26] Yang L, Peng Y, Yang Y, et al. Advanced Science, 2019, 6(12): 1900310.
[27] Chen L, Tang J P, Ma H, et al. Biosens Bioelectron, 2021, 191: 113452.
[28] Billmann J, Otto A. Solid State Communications, 1982, 44(2): 105.
[29] Otto A. Journal of Raman Spectroscopy, 2005, 36(6-7): 497.
[30] Otto A, Mrozek I, Grabhorn H, et al. Surface-Enhanced Raman Scattering. Elsevier Dynamics of Gas-Surface Interaction, 1982, 186.
[31] Jensen L, Aikens C M, Schatz G C. Chemical Society Reviews, 2008, 37(5): 1061.
[32] Lombardi J R, Birke R L. The Journal of Physical Chemistry C, 2014, 118(20): 11120.
[33] Alessandri I, Lombardi J R. Chemical Reviews, 2016, 116(24): 14921.
[34] Wang X, Guo L. Angewandte Chemie International Edition, 2020, 59(11): 4231.
[35] Yang L L, Peng Y S, Yang Y, et al. Advanced Science, 2019, 6: 1900310.
[36] Fujisawa J I. Chemical Physics Letters, 2021, 778: 138774.
[37] Zhang H, Huang S Q, Yang X, et al. Sensors and Actuators B: Chemical, 2021, 343: 130142.
[38] Pham T T H, Vu X H, Trang T T, et al. Optical Materials, 2021, 120(47): 111460.
[39] Chen M P, Liu D, Du X Y, et al. Trends in Analytical Chemistry, 2020, 130: 115983.
[40] Ananthoju B, Biroju R K, Theis W G, et al. Small, 2019, 15(48): 1901555.
[41] Jiang X, Yin D, Yang M, et al. Applied Surface Science, 2019, 487: 938.
[42] Papadakis D, Diamantopoulou A, Pantazopoulos P A, et al. Nanoscale, 2019, 11(44): 21542.
[43] Huang S, Ling X, Liang L, et al. Nano Letters, 2015, 15(5): 2892.
[44] Sheena Mary Y, Shyma Mary Y. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 244: 118865.
[45] Li J Y, Zhang S F, Yang J, et al. Vacuum, 2021, 194: 110579.
[46] Zhao Z H, Zhao X, Zhang M, et al. Nanomaterials, 2021, 11(8): 2063.
[47] Samriti, Prateek, Joshi M C, et al. Materials Chemistry and Physics, 2022, 278: 125642.
[48] Lombardi J R, Birke R L. The Journal of Chemical Physics, 2012, 136: 144704.
[49] Kumar E A, Barveen N R, Wang T J, et al. Microchemical Journal, 2021, 170: 106660.
[50] Zeng Y, Wang F, Du D, et al. Applied Surface Science, 2021, 544: 148924.
[51] Yi Z, Xu X B, Kang X L, et al. Surface and Coatings Technology, 2017, 324: 257.
[52] Lai H S, Xu F G, Zhang Y, et al. Journal of Materials Chemistry B, 2018, 6(24): 4008.
[53] Jabłońska A, Jaworska A, Kasztelan M, et al. Current Medicinal Chemistry, 2019, 26(38): 6878.
[54] Vales V, Drogowska-Horná K, Guerra V, et al. Scientific Reports, 2020, 10: 4516.
[55] Kaushik V, Kagdada H L, Singh D K, et al. Applied Surface Science, 2022, 574: 151724.
[56] He Q H, Han Y K, Huang Y Z, et al. Sensors and Actuators B: Chemical, 2021, 341: 130031.
|
[1] |
LAI Chun-hong*, ZHANG Zhi-jun, WEN Jing, ZENG Cheng, ZHANG Qi. Research Progress in Long-Range Detection of Surface-Enhanced Raman Scattering Signals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2325-2332. |
[2] |
SUN Zhi-ming1, LI Hui1, FENG Yi-bo1, GAO Yu-hang1, PEI Jia-huan1, CHANG Li1, LUO Yun-jing1, ZOU Ming-qiang2*, WANG Cong1*. Surface Charge Regulation of Single Sites Improves the Sensitivity of
Raman Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(04): 1075-1082. |
[3] |
YIN Xiong-yi1, SHI Yuan-bo1*, WANG Sheng-jun2, JIAO Xian-he2, KONG Xian-ming2. Quantitative Analysis of Polycyclic Aromatic Hydrocarbons by Raman Spectroscopy Based on ML-PCA-BP Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 861-866. |
[4] |
SUN Nan, TAN Hong-lin*, ZHANG Zheng-dong, REN Xiang, ZHOU Yan, LIU Jian-qi, CAI Xiao-ming, CAI Jin-ming. Raman Spectroscopy Analysis and Formation Mechanism of Carbon
Nanotubes Doped Polyacrylonitrile/Copper Cyclized to Graphite
at Room Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(09): 2983-2988. |
[5] |
WANG Zi-xiong, XU Da-peng*, ZHANG Yi-fan, LI Jia-jia. Research Progress of Surface-Enhanced Raman Scattering Detection Analyte Molecules[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 341-349. |
[6] |
WAN Xiao-ming1, 2, ZENG Wei-bin1, 2, LEI Mei1, 2, CHEN Tong-bin1, 2. Micro-Distribution of Elements and Speciation of Arsenic in the Sporangium of Pteris Vittata[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 470-477. |
[7] |
HUANG Hui1, 2, TIAN Yi2, ZHANG Meng-die1, 2, XU Tao-ran2, MU Da1*, CHEN Pei-pei2, 3*, CHU Wei-guo2, 3*. Design and Batchable Fabrication of High Performance 3D Nanostructure SERS Chips and Their Applications to Trace Mercury Ions Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3782-3790. |
[8] |
LI Guang-mao, QIAO Sheng-ya, ZHU Chen, ZHENG Fu-li, YANG Sen, CAI Han-xian. Preparation and Application of Micro-Nano Structure SERS Substrate Based on Copper Mesh Displacement Reaction[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3166-3171. |
[9] |
FU Xing-hu, WANG Zhen-xing, MA Shuang-yu, ZHAO Fei, LU Xin, FU Guang-wei, JIN Wa, BI Wei-hong. Preparation and Properties of Micro-Cavity Silver Modified Fiber SERS Probe[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2800-2806. |
[10] |
GUI Bo1, 2, YANG Yu-dong1, ZHAO Qian1, 2, SHI Meng1, MAO Hai-yang1, 3*, WANG Wei-bing1, CHEN Da-peng1, 3. A SERS Substrate for On-Site Detection of Trace Pesticide Molecules Based on Parahydrophobic Nanostructures[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2499-2504. |
[11] |
SUN Ning, CHEN Jun-fan, ZHANG Jie*, ZHU Yong. The Forming Mechanism of Surface Morphology of Nanostructures and Its Effect on Graphene Raman Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1821-1827. |
[12] |
ZHANG Can, ZHANG Jie*, DOU Xin-yi, ZHU Yong. Connection of Absorption and Raman Enhancement Characteristics of Different Types of Ag Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1816-1820. |
[13] |
DOU Xin-yi, ZHANG Can, ZHANG Jie*. Effects of Process Parameters on Double Absorption Resonance Peaks of Au Nanoparticles[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1446-1451. |
[14] |
ZHANG Lei, ZHANG Xia*, WENG Yi-jin, LIU Xiao. Preparation and Properties of Ag/PANI Multifunction Nanozymes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3399-3403. |
[15] |
TIAN Hui-yan1,LIU Yu1, HUANG Jiao-qi1, XIE Feng-xin1, HUANG Guo-rong1, LIAO Pu1, FU Wei-ling1, ZHANG Yang2*. Research Progress and Application of Surface-Enhanced Raman Scattering Technique in Nucleic Acid Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3021-3028. |
|
|
|
|