光谱学与光谱分析 |
|
|
|
|
|
Measurements of CO2 Concentration Profile in Troposphere Based on Balloon-Borne TDLAS System |
YAO Lu, LIU Wen-qing, LIU Jian-guo*, KAN Rui-feng, XU Zhen-yu, RUAN Jun, YUAN Song |
Key Lab of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract The main source and sink of CO2 in the atmosphere are concentrated in the troposphere. It is of great significance to the study of CO2 flux and global climate change to obtain the accurate tropospheric CO2 concentration profile. For the characteristics of high resolution, high sensitivity and fast response of tunable diode laser absorption spectroscopy (TDLAS), a compact balloon-borne system based on direct absorption was developed to detect the CO2 concentration profiles by use of the 2 004.02 nm, R(16), ν1+ν3 line without the interfere of H2O absorption and the CO2 density of the number of molecules below 10 km in the troposphere was obtained. Due to the balloon-borne environment, a compact design of one single board integrated with laser driver, signal conditioning, spectra acquiring and concentration retrieving was developed. Limited by the working capability and hardware resources of embedded micro-processor, the spectra processing algorithm was optimized to reduce the time-cost. Compared with the traditional TDLAS sensors with WMS technique, this system was designed based on the direct absorption technique by means of an open-path Herriott cell with 20 m optical-path, which avoided the process of standardization and enhanced the environmental adaptation. The universal design of hardware and software platform achieved diverse gas measuring by changing the laser and adjusting some key parameters in algorithm. The concept of compact design helped to reduce the system’s power and volume and balanced the response speed and measure precision. The power consumes below 1.5 W in room temperature and the volume of the single board is 120 mm×100 mm×25 mm, and the measurement accuracy is ±0.6×10-6 at 1.5 s response time. It has been proved that the system can realize high precision detection of CO2 profile at 15 m vertical resolution in troposphere and TDLAS is an available method for balloon-borne detection.
|
Received: 2014-06-03
Accepted: 2014-10-25
|
|
Corresponding Authors:
LIU Jian-guo
E-mail: jgliu@aiofm.ac.cn
|
|
[1] Krings T, Gerilowski K, Buchwitz M, et al. Atmospheric Measurement Techniques Discussions, 2011, 4(2): 2207. [2] Le Barbu T, Vinogradov I, Durry G, et al. Advances in Space Research, 2006,38(4): 718. [3] Ghysels M, Durry G, Amarouche N, et al. Applied Physics B-Lasers and Optics, 2012,107(1): 213. [4] Berthet G, Renard J B, Ghysels M, et al. Journal of Atmospheric Chemistry, 2013,70(3): 197. [5] Montouy N, Hauchecorne A, Pommereau J P, et al. Atmospheric Chemistry and Physics, 2009,9(14): 5299. [6] Kan Ruifeng, Liu Wenqing, Zhang Yujun, et al. Chinese Optical Letters,2007, 1(5): 54. [7] Ghysels M, Durry G, Amarouche N, et al. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2013,107: 55. [8] Lins B, Zinn R P, Engelberecht R, et al. Applied Physics B: Lasers and Optics, 2010,100(2): 367. [9] Tarsitano C G, Webster C R. Applied Optics, 2007, 46(28): 6923. [10] Durry G, Pouchet I, Amarouche N, et al. Applied Optics, 2000,39(30): 5609. |
[1] |
ZHENG Hong-quan, DAI Jing-min*. Research Development of the Application of Photoacoustic Spectroscopy in Measurement of Trace Gas Concentration[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 1-14. |
[2] |
XU Qiu-yi1, 3, 4, ZHU Wen-yue3, 4, CHEN Jie2, 3, 4, LIU Qiang3, 4 *, ZHENG Jian-jie3, 4, YANG Tao2, 3, 4, YANG Teng-fei2, 3, 4. Calibration Method of Aerosol Absorption Coefficient Based on
Photoacoustic Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 88-94. |
[3] |
ZHANG Jing, GUO Zhen, WANG Si-hua, YUE Ming-hui, ZHANG Shan-shan, PENG Hui-hui, YIN Xiang, DU Juan*, MA Cheng-ye*. Comparison of Methods for Water Content in Rice by Portable Near-Infrared and Visible Light Spectrometers[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2059-2066. |
[4] |
ZHAO Yang1, ZHANG Lei2, 3*, CHENG Nian-kai4, YIN Wang-bao2, 3*, HOU Jia-jia5, BAI Cheng-hua1. Research on Space-Time Evolutionary Mechanisms of Species Distribution in Laser Induced Binary Plasma[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2067-2073. |
[5] |
ZHANG Hao-yu1, FU Biao1*, WANG Jiao1, MA Xiao-ling2, LUO Guang-qian1, YAO Hong1. Determination of Trace Rare Earth Elements in Coal Ash by Inductively Coupled Plasma Tandem Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2074-2081. |
[6] |
SHEN Feng-jiao1, 3, TAN Tu2*, LU Jun1, ZHANG Sheng1, GAO Xiao-ming2, CHEN Wei-dong3. Research on Middle Infrared Laser Heterodyne Remote Sensing
Technology Based on EC-QCL[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(06): 1739-1745. |
[7] |
LIU Han-yang1, XING Cheng-zhi3*, JI Xiang-guang4, LIN Ji-nan3, ZHAO Chun-hui3, WEI Shao-cong2, ZHANG Cheng-xin2, LIU Hao-ran5, TAN Wei3, LIU Cheng2. Taking Juehua Island as a Typical Example to Explore the Vertical
Distribution Characteristics and Potential Sources of Air Pollutants[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 760-766. |
[8] |
ZHANG Le-wen1, 2, WANG Qian-jin1, 3, SUN Peng-shuai1, PANG Tao1, WU Bian1, XIA Hua1, ZHANG Zhi-rong1, 3, 4, 5*. Analysis of Interference Factors and Study of Temperature Correction Method in Gas Detection by Laser Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 767-773. |
[9] |
ZHENG Li-na1, 2, XUAN Peng1, HUANG Jing1, LI Jia-lin1. Development and Application of Spark-Induced Breakdown Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(03): 665-673. |
[10] |
WU Run-min1, XIE Fei1, SONG Xu-dong1*, BAI Yong-hui1, WANG Jiao-fei1, SU Wei-guang1, YU Guang-suo1, 2. The Mechanism of Hydrocarbon Flame Soot Formation in Spectral
Diagnosis: A Review[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(01): 1-8. |
[11] |
JIN Cheng-qian1, 2, GUO Zhen1, ZHANG Jing1, MA Cheng-ye1, TANG Xiao-han1, ZHAO Nan1, YIN Xiang1. Non-Destructive Detection and Visualization of Soybean Moisture Content Using Hyperspectral Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(10): 3052-3057. |
[12] |
WANG Yan1, 2, 3, WANG Bao-rui1, 2, 3*, WANG Yue1, 2, 3. Study on Radical Characteristics of Methane Laminar Premixed Flame Based on Hyperspectral Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(08): 2403-2410. |
[13] |
ZHANG Shuai-shuai1, GUO Jun-hua1, LIU Hua-dong1, ZHANG Ying-li1, XIAO Xiang-guo2, LIANG Hai-feng1*. Design of Subwavelength Narrow Band Notch Filter Based on
Depth Learning[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1393-1399. |
[14] |
ZHENG Zhuan-ping, LI Ai-dong, DONG Jun, ZHI Yan, GONG Jia-min. Terahertz Spectroscopic Investigation of Maleic Hydrazide Polymorphs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1104-1108. |
[15] |
ZHANG Rui1, 2, 3, TANG Xin-yi1, 2, ZHU Wen-qing1, 2, 3. Research on Shortwave Infrared Multispectral Fluorescence Imaging of Mouse Vein[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1109-1116. |
|
|
|
|