光谱学与光谱分析 |
|
|
|
|
|
Effects of Soil on the Concentration of Rare Earth in Nanfeng Orange |
LIU Ping-hui1,RUI Yu-kui2*,YE Chang-sheng1 |
1. School of Geosciences and Survey Engineering, East China Institute of Technology, Fuzhou 344000, China 2. College of Resources and Environmental Science, China Agricultural University, Beijing 100094, China |
|
|
Abstract Nanfeng orange is a famous fruit in the world, but the content of rare earth in the fruit and its relation to the content in soil were little studied. The present paper studied the contents of rare earth in Nanfeng orange fruit and the effects of soil planting Nanfeng orange on the contents of rare earth in Nanfeng orange fruit by ICP-MS/ICP-AES in order to find the relation of rare earth content in the soil to that in Nanfeng orange fruit. The results showed that ten kinds of rare earths were detected, namely La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho and Yb, whose contents range from 0.63 to 0.01 ng·g-1,while the contents of the ten elements range from 29.36 to 0.07 μg·g-1 in the soil. All data showed that the content of rare earth in fruits is right relative to that in soil. So the authors can conclude that fertilizing with rare earth should be the best way to enhance the content of rare earth in Nanfeng orange fruits.
|
Received: 2007-05-10
Accepted: 2007-08-20
|
|
Corresponding Authors:
RUI Yu-kui
E-mail: ruiyukui@163.com
|
|
Cite this article: |
LIU Ping-hui,RUI Yu-kui,YE Chang-sheng. Effects of Soil on the Concentration of Rare Earth in Nanfeng Orange[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2007, 27(12): 2575-2577.
|
|
|
|
URL: |
https://www.gpxygpfx.com/EN/Y2007/V27/I12/2575 |
[1] HU Zheng-yue, XIAO Hong-yong, LUO Sheng-gen, et al(胡正月, 肖鸿勇, 罗省根, 等). Modern Horticulture(现代园艺), 2007, (1): 1. [2] YU Lan-jing, LIU Yan-ru, GAO Yu-e(禹兰景, 刘艳茹, 高玉娥). Journal of Hebei Forestry Science and Technology(河北林业科技), 1997, (3): 54. [3] GUO Bo-sheng, ZHU Wei-min, XIONG Bing-kun, et al(郭伯生, 竺伟民, 熊炳昆, 等). REEs in Agriculture(农业中的稀土). Beijing: China Agricultural Science and Technology Press(北京: 中国农业科技出版社), 1988. 50. [4] KOU Xing-ming, XU Min, GU Yong-zuo(寇兴明, 徐 敏, 顾永祚). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(6): 1197. [5] RUI Yu-kui, GUO Jing, HUANG Kun-lun, et al(芮玉奎, 郭 晶, 黄昆仑, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(4): 796. [6] RUI Yu-kui, YU Qing-quan, JIN Yin-hua, et al(芮玉奎, 于庆泉, 金银花, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2007, 27(5): 1015. [7] WEI You-zhang, ZHOU Xiao-bo, Mohamed Omar Maalim (魏幼璋, 周晓波, Mohamed Omar Maalim). Plant Nutrition and Fertilizer Science(植物营养与肥料学报), 1999, 5(2): 186. [8] WU Qi-fei, HUANG Da-ming, DONG Ying(吴其飞, 黄达明, 董 英). Scientia Agricultura Sinica(中国农业科学), 2002, 35(10): 1254. [9] SUN Yan, MA Feng-wang, LI Jia-rui(孙 艳,马锋旺,李嘉瑞). China Fruits(中国果树),1994,(4):28. [10] SONG Qi-hua, YUN Jin-ping(宋启华,云晋平). Shanxi Fruits(山西果树),1996,(4):21. [11] LAO Xiu-rong, ZHANG Chang-ai, SUN Wei-hong, et al(劳秀荣,张昌爱,孙伟红,等). Journal of the Chinese Rare Earth Society(中国稀土学报),2004,22(1):158. [12] WU Xiang-yao, TONG Chun-han, LI Zhi-yang(吴香尧,童纯菡,李志杨). Journal of Chengdu University of Technology(成都理工学院学报),2002,29(3):346. [13] SUN Bao-shan, LIU Xiu-chun(孙宝山,刘秀春). Northern Fruits(北方果树),2006,(2):7. [14] YANG Cheng-huan, LIU Xiu-chun, CHEN Bao-jiang, et al(杨成桓,刘秀春,陈宝江). Northern Fruits(北方果树),1997,(4):5. [15] YANG Shui-ping, LI Fang-qing, XIONG Xiao-qing(杨水平, 李芳清, 熊小青). Jiangxi Agricultural Science and Technology(江西农业科技), 1999, (5): 32. |
[1] |
XU Tian1, 2, LI Jing1, 2, LIU Zhen-hua1, 2*. Remote Sensing Inversion of Soil Manganese in Nanchuan District, Chongqing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 69-75. |
[2] |
GU Yi-lu1, 2,PEI Jing-cheng1, 2*,ZHANG Yu-hui1, 2,YIN Xi-yan1, 2,YU Min-da1, 2, LAI Xiao-jing1, 2. Gemological and Spectral Characterization of Yellowish Green Apatite From Mexico[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 181-187. |
[3] |
LI Hu1, ZHONG Yun1, 2, FENG Ya-ting1, LIN Zhen1, ZHU Shi-jiang1, 2*. Multi-Vegetation Index Soil Moisture Inversion Model Based on UAV
Remote Sensing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 207-214. |
[4] |
HAN Xue1, 2, LIU Hai1, 2, LIU Jia-wei3, WU Ming-kai1, 2*. Rapid Identification of Inorganic Elements in Understory Soils in
Different Regions of Guizhou Province by X-Ray
Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2024, 44(01): 225-229. |
[5] |
CHENG Hui-zhu1, 2, YANG Wan-qi1, 2, LI Fu-sheng1, 2*, MA Qian1, 2, ZHAO Yan-chun1, 2. Genetic Algorithm Optimized BP Neural Network for Quantitative
Analysis of Soil Heavy Metals in XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3742-3746. |
[6] |
MENG Shan1, 2, LI Xin-guo1, 2*. Estimation of Surface Soil Organic Carbon Content in Lakeside Oasis Based on Hyperspectral Wavelet Energy Feature Vector[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3853-3861. |
[7] |
LI Qi-chen1, 2, LI Min-zan1, 2*, YANG Wei2, 3, SUN Hong2, 3, ZHANG Yao1, 3. Quantitative Analysis of Water-Soluble Phosphorous Based on Raman
Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(12): 3871-3876. |
[8] |
XIE Peng, WANG Zheng-hai*, XIAO Bei, CAO Hai-ling, HUANG Yi, SU Wen-lin. Hyperspectral Quantitative Inversion of Soil Selenium Content Based on sCARS-PSO-SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3599-3606. |
[9] |
HUANG Zhao-di1, CHEN Zai-liang2, WANG Chen3, TIAN Peng2, ZHANG Hai-liang2, XIE Chao-yong2*, LIU Xue-mei4*. Comparing Different Multivariate Calibration Methods Analyses for Measurement of Soil Properties Using Visible and Short Wave-Near
Infrared Spectroscopy Combined With Machine Learning Algorithms[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(11): 3535-3540. |
[10] |
AN Bai-song1, 2, WANG Xue-mei1, 2*, HUANG Xiao-yu1, 2, KAWUQIATI Bai-shan1, 2. Hyperspectral Estimation of Soil Lead Content Based on Random Frog Band Selection Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(10): 3302-3309. |
[11] |
DENG Yun1, 2, NIU Zhao-wen1, 2, FENG Qi-yao1, 2, WANG Yu1, 2*. A Novel Hyperspectral Prediction Model of Organic Matter in Red Soil Based on Improved Temporal Convolutional Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(09): 2942-2951. |
[12] |
CAI Hai-hui1, ZHOU Ling2, SHI Zhou3, JI Wen-jun4, LUO De-fang1, PENG Jie1, FENG Chun-hui5*. Hyperspectral Inversion of Soil Organic Matter in Jujube Orchard
in Southern Xinjiang Using CARS-BPNN[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2568-2573. |
[13] |
XIA Chen-zhen1, 2, 3, JIANG Yan-yan4, ZHANG Xing-yu1, 2, 3, SHA Ye5, CUI Shuai1, 2, 3, MI Guo-hua5, GAO Qiang1, 2, 3, ZHANG Yue1, 2, 3*. Estimation of Soil Organic Matter in Maize Field of Black Soil Area Based on UAV Hyperspectral Image[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2617-2626. |
[14] |
ZHANG Zi-hao1, GUO Fei3, 4, WU Kun-ze1, YANG Xin-yu2, XU Zhen1*. Performance Evaluation of the Deep Forest 2021 (DF21) Model in
Retrieving Soil Cadmium Concentration Using Hyperspectral Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(08): 2638-2643. |
[15] |
ZHANG Hao-yu1, FU Biao1*, WANG Jiao1, MA Xiao-ling2, LUO Guang-qian1, YAO Hong1. Determination of Trace Rare Earth Elements in Coal Ash by Inductively Coupled Plasma Tandem Mass Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2023, 43(07): 2074-2081. |
|
|
|
|